Evolution kernels for parton shower Monte Carlo

A. Kusina (LPSC Grenoble)
in collaboration with:
O. Gituliar, S. Jadach, M. Skrzypek

Outline:

- Motivations: KrkMC project construction of NLO parton shower
- New regularization scheme and kernel calculation
- Results
- Summary

Cracow Epiphany Conference, 8-10 January 2015

Motivations: KrkMC project construction of NLO shower

Past: only LO parton showers (early Pythia, Herwig)

- LO DGLAP evolution
- LO hard process

Currently available: only NLO-improved ($\mathrm{N}+\mathrm{LO}$) parton showers (MC@NLO, POWHEG)

- LO DGLAP evolution
- NLO corrections in hard process

Ongoing: KrkMC project (Jadach, et al.) = construct fully NLO parton shower

- NLO DGLAP evolution
- NLO corrections in hard process
- future: maybe possibile to include $\mathrm{N}^{2} \mathrm{LO}$ hard process corrections ($\mathrm{N}+\mathrm{NLO}$)

KrkMC project

- Reformulate factorization (modify $\overline{\mathrm{MS}}$ scheme for Monte Carlo use - exclusive level)
- Recalculate evolution kernels (splitting functions) in the modified scheme
- inclusive and exclusive distributions
- keep track of relation to $\overline{\mathrm{MS}}$
- Method for implementing NLO corrections on top of LO shower
- NLO corrections in the hard process (see A. Siodmok talk)
- NLO corrections in the shower

NLO corrections to hard process

NLO corrections in the MC ladder (gluons out of quarks)

Collinear factorization and evolution kernels

In axial gauge perturbative expansion of squared matrix element can be reorganized in form of generalized ladder expansion in terms of 2PI kernels C_{0} and K_{0}.

Raw factorization:
C_{0} kernel is finite, K_{0} contains all mass singularities.

Full factorization:

obtained by introducing projection operator \mathbb{P} decoupling C_{0} and K_{0} kernels

Evolution kernels extracted as $\frac{1}{\epsilon}$ coefficients:

$$
\Gamma=\frac{1}{1-K}=\frac{1}{1-\mathbb{P}\left(K_{0} \cdot \frac{1}{1-(1-\mathbb{P}) \cdot K_{0}}\right)}=x \operatorname{PP}\left\{\int \frac{d^{n} k}{(2 \pi)^{n}} \delta\left(x-\frac{k n}{p n}\right)\left[\frac{\not n}{4 k n} K_{0 \not p}\right]\right\}
$$

Kernel calculation - CFP approach

- Start from CFP scheme [Nucl.Phys. B175 (1980) 27] :
- Axial gauge (physical interpretation, spurious singularities)
- PV regularization applied to gluon propagator:

$$
\begin{aligned}
& \frac{1}{l^{2}}\left(g^{\mu \nu}-\frac{l^{\mu} n^{\nu}+l^{\nu} n^{\mu}}{\ln }\right) \rightarrow \frac{1}{l^{2}}\left(g^{\mu \nu}-\frac{l^{\mu} n^{\nu}+l^{\nu} n^{\mu}}{[\ln]_{P V}}\right) \\
& \frac{1}{[\ln]_{P V}}=\frac{l n}{(\ln)^{2}+\delta^{2}(l p)^{2}}
\end{aligned}
$$

- leads to $\frac{1}{\epsilon^{3}}$ poles (canceling between real and virtual graphs) - very problematic for 4 -dimensional MC implementation, e.g. (sing. terms)

$$
\begin{gathered}
\sim\left[\frac{P_{q q}(x)}{\epsilon^{3}}-2 I_{0} \frac{P_{q q}(x)}{\epsilon^{2}}+\frac{p_{q q}(x)}{\epsilon}\left(-2 I_{1}+4 I_{0}+2 I_{0} \ln x-2 I_{0} \ln (1-x)+\text { finite }\right)\right] \\
I_{0}=\int_{0}^{1} \frac{d x}{[x]_{P V}} \sim-\ln \delta, \quad I_{1}=\int_{0}^{1} d x \frac{\ln x}{[x]_{P V}} \sim-\frac{1}{2} \ln ^{2} \delta
\end{gathered}
$$

- unintegrated distributions not available

Kernel re-calculation - modified approach

- Monte Carlo (MC) scheme [Phys.Lett. B732 (2014) 218, JHEP 1108 (2011) 012] :
- Axial gauge
- new/modified use of PV regularization (NPV):

Apply PV regularization to all singularities in the plus variable $l_{+}=\frac{l n}{p n}$, not only to the axial denominators of the gluon propagators.

$$
d^{m} l l_{+}^{-1+\epsilon} \rightarrow d^{m} l\left[\frac{1}{l_{+}}\right]_{P V}\left(1+\epsilon \ln l_{+}+\epsilon^{2} \frac{1}{2} \ln ^{2} l_{+}+\ldots\right)
$$

- No $\frac{1}{\epsilon^{3}}$ terms in real and virtual graphs (replaced by $\frac{1}{\epsilon} I_{1}$ and $\frac{1}{\epsilon^{2}} I_{0}$)

- $\frac{1}{\epsilon^{2}}$ terms present only in virtual graphs (up to certain subtleties)
- no need for real-virtual cancellations
- Real and virtual diagrams do not depend on the upper phase space limit (connected to evolution variable)

Example: virtual integral in NPV regularization

$$
\begin{aligned}
& \int \frac{d^{m} l}{(2 \pi)^{m}} \frac{f\left(l_{+}\right)}{l^{2}(l-q)^{2}(l-p)^{2}}= \\
& =\frac{-i}{16 \pi^{2} q^{2}}\left(\frac{4 \pi}{-q^{2}}\right)^{-\epsilon} \frac{\Gamma(1-\epsilon)}{-\epsilon}\left[\int_{0}^{x} d y f\left(l_{+}\right) z^{\epsilon}(1-z)^{\epsilon}\left(1+2 \epsilon \ln \frac{1-y}{1-z}\right) \frac{1}{1-y}\right. \\
& \left.\quad+2 \frac{\Gamma^{2}(1+\epsilon)}{\Gamma(1+2 \epsilon)}(1-x)^{-\epsilon} \int_{x}^{1} d y f\left(l_{+}\right)(1-y)^{-1+2 \epsilon}\right]
\end{aligned}
$$

kinematics: $p^{2}=(p-q)^{2}=0, q^{2}<0, x=\frac{q_{+}}{p_{+}}, y=\frac{l_{+}}{p_{+}}, z=\frac{y}{x}, m=4+2 \epsilon$

- Singularities in $f\left(l_{+}\right)$(at $y=0$ and $y=x$) originate from gluon propagator and are regularized by PV.
- Singularity at $y=1$ (NOT from gluon propagator) in NPV is also regularized by PV.

$$
(1-y)^{-1+2 \epsilon} \rightarrow(1-y)^{2 \epsilon} \frac{1}{[1-y]_{P V}}
$$

© In NPV scheme l_{+}integration must be performed as the last one.

Example: virtual non-axial integral

The non-axial integrals are also affected by the change of scheme.

$$
J_{3}^{\mathrm{F}}=\int \frac{d^{m} l}{(2 \pi)^{m}} \frac{1}{l^{2}(q-l)^{2}(p-l)^{2}}
$$

The PV regularization:

$$
J_{3}^{\mathrm{F}} \sim\left[-\frac{1}{\epsilon^{2}}+\frac{\pi^{2}}{6}\right]
$$

The NPV prescription:

$$
\begin{gathered}
J_{3}^{\mathrm{F}} \sim\left[-\frac{2 I_{0}+\ln (1-x)}{\epsilon}-4 I_{1}+2 I_{0} \ln (1-x)+\frac{\ln ^{2}(1-x)}{2}\right] \\
I_{0}=\int_{0}^{1} \frac{d x}{[x]_{P V}} \sim-\ln \delta, \quad I_{1}=\int_{0}^{1} d x \frac{\ln x}{[x]_{P V}} \sim-\frac{1}{2} \ln ^{2} \delta
\end{gathered}
$$

Results

- The non-singlet $P_{q q}$ and the most singular singlet $P_{g g}$ graphs have been calculated earlier as a proof of the new methodology. [Phys.Lett. B732 (2014) 218, JHEP 1108 (2011) 012]

- Axiloop Mathematica package for calculating NLO kernels has been developed [Gituliar: http://www.gituliar.org/axiloop/]

Results: $P_{q q}$

Phys.Lett. B732 (2014) 218, JHEP 1108 (2011) 012

$p_{q q}$	-6	0	-6	-6	0	-6	6	$44 / 3$	$-22 / 3$	$22 / 3$	$-8 / 3$	$4 / 3$	$-4 / 3$
$p_{q q} \ln x$	4	0	4	4	0	4	-8	0	0	0	0	0	0
$p_{q q} \ln (1-x)$	8	0	8	0	0	0	0	-16	8	-8	0	0	0
$p_{q q} I_{0}$	16	0	16	8	0	8	-8	-16	8	-8	0	0	0

$p_{q q}$	-7	-4	-11	-7	0	-7	7	0	103/9	103/9	0	-10/9	-10/9
$p_{q q} \ln x$	0	$-3 / 2$	$-3 / 2$	0	-3/2	$-3 / 2$	0	0	11/3	11/3	0	-2/3	$-2 / 3$
$p_{q q} \ln (1-x)$	-3	8	5	-3	0	-3	3	22/3	$-34 / 3$	-4	-4/3	4/3	0
$p_{q q} \ln ^{2} x$	2	-1	1	2	-1	1	-2	0	0	0	0	0	0
$p_{q q} \ln x \ln (1-x)$	2	4	6	2	0	2	-4	0	-4	-4	0	0	0
$p_{q q} \ln ^{2}(1-x)$	4	-2	2	0	0	0	0	-8	6	-2	0	0	0
$p_{q q} \mathrm{Li}_{2}(1)$	8	-2	6	4	0	4	-4	0	-4	-4	0	0	0
$p_{q q} \mathrm{Li}_{2}(1-x)$	-2	2	0	2	-2	0	0	0	0	0	0	0	0
$1-x$	-5/2	$3 / 2$	-1	-7/2	$-15 / 2$	-11	3	22/3	-4	10/3	-4/3	0	$-4 / 3$
$(1-x) \ln x$	2	0	2	2	0	2	-4	0	0	0	0	0	0
$(1-x) \ln (1-x)$	4	0	4	0	0	0	0	-8	4	-4	0	0	0
$1+x$	$-1 / 2$	1/2	0	1/2	-1/2	0	0	0	0	0	0	0	0
$(1+x) \ln x$	0	1/2	1/2	0	-7/2	-7/2	0	0	0	0	0	0	0
Spurious poles													
$p_{q q} I_{0}$	0	8	8	0	0	0	0	0	-4	-4	0	0	0
$p_{q q} I_{0} \ln x$	4	4	8	4	0	4	-4	0	-4	-4	0	0	0
$p_{q q} I_{0} \ln (1-x)$	12	-4	8	4	0	4	-4	-8	4	-4	0	0	0
$p_{q q} I_{1}$	-12	4	-8	-4	0	-4	4	0	4	4	0	0	0
$(1-x) I_{0}$	8	0	8	4	0	4	-4	-8	4	-4	0	0	0

Results cross-checked with: Curci et al. 1980, Heinrich 1998,
Vogelsang 1996

Results: calculation of $P_{g g}, P_{q g}$ and $P_{g q}$ NLO kernels completed

$P_{q g}^{(1)}=C_{F} T_{f}\left\{4-9 x-(1-4 x) \ln x-(1-2 x) \ln ^{2} x+4 \ln (1-x)\right.$
$\left.+\left[2 \ln ^{2}\left(\frac{1-x}{x}\right)-4 \ln \left(\frac{1-x}{x}\right)-\frac{2}{3} \pi^{2}+10\right] p_{q g}(x)\right\}$
$+N_{C} T_{f}\left\{\frac{182}{9}+\frac{14}{9} x+\frac{40}{9 x}+\left(\frac{136}{3} x-\frac{38}{3}\right) \ln x-4 \ln (1-x)-(2+8 x) \ln ^{2} x\right.$
$+\left[-\ln ^{2} x+\frac{44}{3} \ln x-2 \ln ^{2}(1-x)+4 \ln (1-x)+\frac{\pi^{2}}{3}-\frac{218}{9}\right] p_{q g}(x)$
$\left.+2 p_{q g}(-x) S_{2}(x)\right\}$
$P_{g q}^{(1)}=C_{F}^{2}\left\{-\frac{5}{2}-\frac{7}{2} x+\left(2+\frac{7}{2} x\right) \ln x-\left(1-\frac{1}{2} x\right) \ln ^{2} x-2 x \ln (1-x)\right.$
$\underline{P_{g q} \text { diagrams }}$

$$
\left.-\left[3 \ln (1-x)+\ln ^{2}(1-x)\right] p_{g q}(x)\right\}
$$

$$
+C_{F} N_{C}\left\{\frac{28}{9}+\frac{65}{18} x+\frac{44}{9} x^{2}-\left(12+5 x+\frac{8}{3} x^{2}\right) \ln x+(4+x) \ln ^{2} x+2 x \ln (1-x)\right.
$$

$$
+\left[-2 \ln x \ln (1-x)+\frac{1}{2} \ln ^{2} x+\frac{11}{3} \ln (1-x)+\ln ^{2}(1-x)-\frac{\pi^{2}}{6}+\frac{1}{2}\right] p_{g q}(x)
$$

$$
\left.+S_{2}(x) p_{g q}(-x)\right\}
$$

$$
+C_{F} T_{f}\left\{-\frac{4}{3} x-\left[\frac{20}{9}+\frac{4}{3} \ln (1-x)\right] p_{g q}(x)\right\}
$$

- Inclusive results agree with the literature.
- Some more work on the unintegrated distributions required.

Summary

- We introduced New PV (NPV) prescription by applying PV regulator to all singularities in the momentum plus component.
- We have calculated NLO DGLAP kernels in the MC-friendly scheme in inclusive and exclusive form.
- We have showed explicitly that NPV prescription works in practice by reproducing the inclusive $\overline{\mathrm{MS}}$ splitting functions.
- In the new scheme there are no $\frac{1}{\epsilon^{3}}$ poles, most of the singularities cancel separately between real and virtual graphs.
- Most of the real diagrams can be calculated in 4-dimensions and are usable for the MC simulations.
- Some more calculations need: unintegrated distributions in variables matching the ordering variable of the LO shower.

Thank you

NLO corrections to hard process

NLO correction to hard process

$$
W_{M C}^{N L O}=1+\Delta_{S+V}+\sum_{j \in F} \frac{\tilde{\beta}_{1}\left(q_{1}, q_{2}, \bar{k}_{j}\right)}{\bar{P}\left(z_{F j}\right) d \sigma_{B}(\hat{s}, \hat{\theta}) / d \Omega}+\sum_{j \in B} \frac{\tilde{\beta}_{1}\left(q_{1}, q_{2}, \bar{k}_{j}\right)}{\bar{P}\left(z_{B j}\right) d \sigma_{B}(\hat{s}, \hat{\theta}) / d \Omega}
$$

- soft+virtual NLO correction (kinematics independent!)

$$
\Delta_{S+V}=\frac{C_{F} \alpha_{s}}{\pi}\left(\frac{2}{3} \pi^{2}-\frac{5}{4}\right)
$$

- real correction (with subtraction)

$$
\begin{aligned}
& \tilde{\beta}_{1}\left(q_{1}, q_{2}, k\right)=\left[\frac{(1-\beta)^{2}}{2} \frac{d \sigma_{B}}{d \Omega_{q}}\left(\hat{s}, \theta_{F}\right)+\frac{(1-\alpha)^{2}}{2} \frac{d \sigma_{B}}{d \Omega_{q}}\left(\hat{s}, \theta_{B}\right)\right] \\
& \quad-\theta_{\alpha>\beta} \frac{1+(1-\alpha-\beta)^{2}}{2} \frac{d \sigma_{B}}{d \Omega_{q}}(\hat{s}, \hat{\theta})-\theta_{\alpha<\beta} \frac{1+(1-\alpha-\beta)^{2}}{2} \frac{d \sigma_{B}}{d \Omega_{q}}(\hat{s}, \hat{\theta}) .
\end{aligned}
$$

- summation over all partons!

NLO corrections in the MC ladder (gluons out of quarks)

NLO corrections in the MC ladder (gluons out of quarks)

- From the numerical point of view one or two

NLO insertions $\int_{\because,}^{4} \because$ are sufficient (restrict number of p_{i} sums).

- Sums over j_{k} can be also restricted (like in the case of hard process) using variable

$$
u_{p j}=\eta_{p}-\eta_{j}+\lambda \ln \left(1-z_{j}\right)
$$

and choosing only the hardest (or two hardest) in $u_{p j}$ emissions.

