Towards three-loop QCD corrections to the time-like splitting functions

Oleksandr Gituliar

in collaboration with

Sven Moch

on Future High Energy Colliders

8-10 January 2015

Motivation	The Method	Tools & Calculation	Summary
•00	000	0000	00

Three-loop time-like $\mathbf{q} \rightarrow \mathbf{g}$ splitting function

Motivation	The Method	Tools & Calculation	Summary
000	000	0000	00

Three-loop time-like $q \rightarrow g$ splitting function

Why three-loop?

Because since 1980 two-loop splitting functions were calculated by various methods probably as more times as any other expression.

Space-like

- axial gauge (PV prescription) Curci, Furmanski, Petronzio '80; Ellis, Vogelsang '98
- Feynman gauge (x-space) Floratos, Kounnas, Lacaze '81
- axial gauge (ML prescription) Bassetto, Heinrich, Kunszt, Vogelsang '98
- Feynman gauge (Mellin space) Moch, Vermaseren '99
- axial gauge (NPV prescription) OG, Jadach, Skrzypek, Kusina '14 (A.Kusina's talk)

Time-like

- axial gauge (PV prescription) Furmanski, Petronzio '80
- Feynman gauge (x-space) Floratos, Kounnas, Lacaze '81
- analytic continuation Stratmann, Vogelsang '96; Blumlein, Ravindran, van Neerven '00; Moch, Vogt '07
- Feynman gauge (Mellin space) Mitov, Moch '06

Motivation	The Method	Tools & Calculation	Summary
000	000	0000	00

Three-loop time-like $q \rightarrow g$ splitting function

Why time-like?

Because space-like three-loop splitting functions are already calculated. Moch, Vermaseren, Vogt '04 (*Nuclear Physics B* selected top paper in 2004)

But can't one use some trick to derive them from space-like results?

Examples of tricks (analytic continuation): Drell, Levy, Yan '70; Gribov, Lipatov '72

Sure!

- ► NNLO non-singlet Mitov, Moch, Vogt '06
- \blacktriangleright NNLO singlet (q
 ightarrow q and g
 ightarrow g) Moch, Vogt '07
- ▶ NNLO singlet ($q \rightarrow g$ and $g \rightarrow q$) Almasy, Moch, Vogt '11

Three-loop time-like $\mathbf{q} \rightarrow \mathbf{g}$ splitting function should be calculated directly.

Motivation	The Method	Tools & Calculation	Summary
000	●00	0000	00

1. Mass factorization (algebraic) relations

The unpolarized differential cross-section for " $\gamma^* \rightarrow$ partons" decay

$$\frac{1}{\sigma_{\text{tot}}} \frac{d^2 \sigma^H}{dx \, d \cos \theta} = \frac{3}{8} (1 + \cos^2 \theta) \, \mathcal{F}_T(x) + \frac{3}{4} \sin^2 \theta \, \mathcal{F}_L(x) + \frac{3}{4} \cos \theta \, \mathcal{F}_A(x)$$

The mass factorization relations are Vermaseren, Vogt, Moch '05

$$\begin{split} \mathcal{F}_{T}^{(1)} &= -\frac{2}{\epsilon} P_{gq}^{(0)} + c_{T,g}^{(1)} + \epsilon a_{T,g}^{(1)} + \epsilon^{2} b_{T,g}^{(1)} \\ \mathcal{F}_{T}^{(2)} &= \frac{1}{\epsilon^{2}} \left\{ P_{gq}^{(0)} \left(P_{qq}^{(0)} + P_{gg}^{(0)} + \beta_{0} \right) \right\} + \frac{1}{\epsilon} \left\{ P_{gq}^{(1)} + 2 c_{T,q}^{(1)} P_{gq}^{(0)} + c_{T,g}^{(1)} P_{gg}^{(0)} \right\} \\ &+ c_{T,g}^{(2)} - 2 a_{T,q}^{(1)} P_{gq}^{(0)} - a_{T,g}^{(1)} P_{gg}^{(0)} + \epsilon \left\{ a_{T,g}^{(2)} - 2 b_{T,q}^{(1)} P_{gq}^{(0)} - b_{T,g}^{(1)} P_{gg}^{(0)} \right\} \\ &+ \frac{1}{6\epsilon^{3}} \left\{ P_{gi}^{(0)} P_{ij}^{(0)} P_{ig}^{(0)} + 3\beta_{0} P_{gi}^{(0)} P_{ig}^{(0)} + 2\beta_{0}^{2} P_{gg}^{(0)} \right\} \\ &+ \frac{1}{6\epsilon^{2}} \left\{ 2 P_{gi}^{(0)} P_{ig}^{(1)} + P_{gi}^{(1)} P_{ig}^{(0)} + 2\beta_{0} P_{gg}^{(1)} + 2\beta_{1} P_{gi}^{(0)} + 3P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_{0} \delta_{ij} \right) c_{\phi,i}^{(1)} \right\} \\ &- \frac{1}{6\epsilon} \left\{ 2 P_{gg}^{(2)} + 3 P_{gi}^{(1)} c_{\phi,i}^{(1)} + 6 P_{gi}^{(0)} c_{\phi,i}^{(2)} - 3P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_{0} \delta_{ij} \right) a_{\phi,i}^{(1)} \right\} \\ &+ c_{\phi,g}^{(3)} - \frac{1}{2} P_{gi}^{(1)} a_{\phi,i}^{(1)} - P_{gi}^{(0)} a_{\phi,i}^{(2)} + \frac{1}{2} P_{gi}^{(0)} \left(P_{ij}^{(0)} + \beta_{0} \delta_{ij} \right) b_{\phi,j}^{(1)} + O(\epsilon) \end{split}$$

ivation	The Method	Tools & Calculation	Summary
0	000	0000	00

2. Fragmentation Functions

$${\cal F}_T(x,\epsilon) ~=~ {2\over 2-d} \left({k_0 \cdot q \over q^2} W_\mu^{\ \mu} + {k_0^\mu k_0^
u \over k_0 \cdot q} W_{\mu
u}
ight)$$

The hadronic tensor is defined as

$$W_{\mu\nu}(x,\epsilon) = rac{x^{d-3}}{4\pi} \int \mathrm{dPS}(\mathbf{n}) \ M_{\mu}(n) \ M_{\nu}(n)$$

dPS(n) is n-particle real phase-space

▶ amplitude $M^{\mu}(n)$ describes process " $\gamma^{*}(q) \rightarrow g(k_{0}) + n$ partons"

Mot

Activation	The Method	Tools & Calculation	Summary
000	000	0000	00

3. Final Considerations for NNLO corrections

Pure-virtual contributions contain overall $\delta(1-x)$ factor. We do not consider such contributions.

Can be extracted from Garland, Gehrmann, Glover, Koukoutsakis, Remiddi '01 Calculated by Duhr, Gehrman, Jaquier 1411.3587 [hep-ph]

One-loop helicity amplitudes by Bern, Dixon, Kosower '97 Final-state integration is of NLO complexity — simple.

Contribution is known from analytical continuation by Almasy, Moch, Vogt '11

Unknown!

Motivation	The Method	Tools & Calculation	Summary
000	000	●000	00

Final-state integration

 \sim 4-loop

The main challenge of the calculation is *n*-particle final-state integration:

$$\int \mathrm{dPS}(\mathbf{n}) = \int \prod_{i=0}^{n} \mathrm{d}^{m} k_{i} \delta^{+}(k_{i}^{2}) \ \delta\left(x - \frac{2k_{0} \cdot q}{q^{2}}\right) \ \delta(q - \sum_{j=0}^{n} k_{j})$$

Since recently such integrals can be found with Integration-By-Parts method.

Software we consider:

- LiteRed Lee '13
- ► Reduze von Manteuffel, Studerus '12

Motivation Let N 000 000	lethod I	ools & Calculation	OO Summary
Preparation			
		~ ~~	
QGRAF	8 amplitudes	► 48 ampli	itudes
FORM			
trace of gamma matrices	5		
index contraction			
 color traces 			
partial fractioning			
Mathematica	499 integrals	► 55 614 i	ntegrals
analyze symmetries			
 split by topologies 			
LiteRed			
 find IBP reduction rules 	► ~10 h	\blacktriangleright $\sim \! 1000$ h	ı (multi-thread
find masters	9 masters	► ~80 ma	sters

Motivation	The Method	Tools & Calculation	Summary
000	000	0000	00

System of Differential Equations for Masters at NLO

$$\begin{pmatrix} \frac{(2\epsilon-1)(2\kappa-1)}{(1-\kappa)\kappa} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{3\epsilon-2}{(1-\kappa)\kappa} & -\frac{3\epsilon-1}{\epsilon(\kappa-1)\kappa} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{(2\epsilon-1)(3\epsilon-1)}{\epsilon(\kappa-1)\kappa} & \frac{2\epsilon}{\epsilon(\kappa-1)\kappa} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{(2\epsilon-1)(3\epsilon-1)}{2\epsilon(\kappa-1)\kappa^2} & \frac{(2\epsilon-1)(3\epsilon-1)}{(2\epsilon-1)(\kappa-1)} & 0 & \frac{2\epsilon(\kappa^2-3\kappa-2)}{(1-\kappa)\kappa(\kappa+1)} & \frac{2\epsilon(6\epsilon-1)}{(1-\kappa)\kappa} & 0 & 0 & 0 & 0 \\ 0 & \frac{(2\epsilon-1)(3\epsilon-2)(3\epsilon-1)}{\epsilon(\kappa-1)\kappa^2} & 0 & \frac{2\epsilon-1}{1-\kappa} & 0 & 0 & 0 & 0 \\ 0 & \frac{2\epsilon-1}{\epsilon(\kappa-1)\kappa} & 0 & \frac{2\epsilon-1}{\epsilon(\kappa-1)\kappa} & 0 & 0 & 0 & 0 \\ 0 & \frac{2\epsilon-1}{\epsilon(\kappa-1)\kappa} & 0 & \frac{2\epsilon-1}{\epsilon(\kappa-1)\kappa} & 0 & 0 & 0 & 0 \\ 0 & \frac{4(2\epsilon-1)(3\epsilon-2)(3\epsilon-1)}{\epsilon^2(1-\kappa)^3(\kappa+1)} & \frac{4(\kappa^2+1)}{(\kappa-1)\kappa^2(\kappa+1)^2} & \frac{2\epsilon(6\epsilon-1)}{(1-\kappa)\kappa^2(\kappa+1)} & 0 & 0 & 0 \\ \frac{4(2\epsilon-1)(3\epsilon-2)(3\epsilon-1)}{\epsilon^2(\kappa-1)^3\kappa^2} & -\frac{2\epsilon}{(\kappa-1)\kappa} & 0 & 0 & \frac{4\epsilon+1}{-\kappa} & 0 & 0 \\ \frac{2(1-2\epsilon)(3\epsilon-2)(3\epsilon-1)}{\epsilon^2(\kappa-1)^3\kappa^3} & \frac{2(2\epsilon-1)(3\epsilon-1)(3\epsilon-1)}{\epsilon(\kappa-1)^3\kappa^3} & \frac{4\epsilon}{(1-\kappa)^2\kappa} & \frac{4(\kappa^2+1)}{(1-\kappa)^3\kappa^2} & \frac{2(6\epsilon-1)(\kappa+1)}{(1-\kappa)^3\kappa^2} & 0 & 0 & \frac{4\epsilon+1}{-\kappa} & 0 \\ \frac{2(1-2\epsilon)(3\epsilon-2)(3\epsilon-1)}{\epsilon(\kappa-1)^3\kappa^3} & \frac{2(2\epsilon-1)(3\epsilon-1)(3\kappa-1)}{(1-\kappa)^3\kappa^2} & \frac{4(\kappa^2+1)}{(1-\kappa)^3\kappa^2} & \frac{2(6\epsilon-1)(\kappa+1)}{(1-\kappa)^3\kappa^2} & 0 & 0 & \frac{2(2\epsilon+1)(2\kappa-1)}{(1-\kappa)\kappa} & 0 \\ \frac{2(1-2\epsilon)(3\epsilon-2)(3\epsilon-1)}{\epsilon(\kappa-1)^3\kappa^3} & \frac{4(\kappa^2+1)}{(1-\kappa)^3\kappa^2} & \frac{2(6\epsilon-1)(\kappa+1)}{(1-\kappa)^3\kappa^2} & 0 & 0 & \frac{4\epsilon+1}{-\kappa} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{2(2\epsilon+1)(2\kappa-1)}{(1-\kappa)\kappa} & \frac{2(2\epsilon+1)(2\kappa-1)}{(1-\kappa)\kappa} & \frac{2(6\epsilon-1)(\kappa+1)}{(1-\kappa)\kappa^2} & \frac{2(6\epsilon-1)(\kappa+1)}{(1$$

Following properties ensure that solution can be found in terms of Harmonic Polylogarythms Remiddi, Vermaseren '99:

- Alphabet (letters): $\{x, 1-x, 1+x\}$
- Main diagonal contains only $\{\frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}\}$ terms
- Non-triangular terms vanish in $\epsilon \rightarrow 0$ limit

lotivation	The Method	Tools & Calculation	Summary
00	000	0000	00

Solutions for Masters at NLO

Masters are found in terms of HPLs as ϵ -series to any order.

$$M_{2}(x) = M_{2}^{(0)} + \epsilon M_{2}^{(1)} + \epsilon^{2} M_{2}^{(2)} + \dots$$

$$M_{2}^{(0)} = x^{1-3\epsilon} (C_{2}^{(0)} - 2 \ln x C_{1}^{(0)})$$

$$M_{2}^{(1)} = x^{1-3\epsilon} (C_{2}^{(1)} - 2 \ln x C_{1}^{(1)} + (3H_{0} - 4H_{2} - 2H_{0,0}) C_{1}^{(0)})$$

$$M_{2}^{(2)} = x^{1-3\epsilon} (C_{2}^{(2)} - 2 \ln x C_{1}^{(2)} + (3H_{0} - 4H_{2} - 2H_{0,0}) C_{1}^{(1)} + (6H_{2} - 4H_{3} + 3H_{0,0} - 4H_{2,0} - 8H_{2,1} - 2H_{0,0,0}) C_{1}^{(0)})$$

Actual challange is to find integration constants $C_n^{(k)}$!

Motivation	The Method	Tools & Calculation	Summary
000	000	0000	•0

To be continued...

Motivation	The Method	Tools & Calculation	Summary
000	000	0000	⊙●
Summary			

Done:

- Preparation steps to start integration
 - ightarrow code in QGRAF, FORM, Mathematica
- Simplify integrals
 - \rightarrow various symmetries and partial fractioning
- IBP identities for NNLO case
 - \rightarrow reduces 55 614 integrals to just \sim 80 masters
 - $\rightarrow \sim$ 1000h and still running

(CC1 cluster at IFJ PAN & Phenod cluster at DESY)

- Solution for masters
 - \rightarrow from differential equations to any order in $\epsilon\text{-parameter}$

In progress:

- Implementation of the boundary conditions finder
- Three-loop time-like $q \rightarrow g$ splitting function