Precise determination of $\pi\pi$ scattering amplitudes for *D* and *F* waves

V. Nazari

Institute of Nuclear Physics-PAN, Kraków XXI Cracow EPIPHANY Conference

January 9, 2015

Outline

- 2 Why it is so important?
- 3 How to solve it?

Definition of the problem

Lack of correct partial wave amplitudes for D and F waves in the processes $\pi\pi \to \pi\pi$, $K\bar{K}$ and $\eta\eta$ in the $I^G J^{PC} = 0^+2^{++}$ and the 1^+3^{--} sectors to study the f_2 and ρ_3 mesons respectively.

The Main Problems:

- Lack of crossing symmetry condition.
- Unsuitable behavior of phase shift in the vicinity of the $\pi\pi$ threshold.

Definition of the problem

Lack of correct partial wave amplitudes for D and F waves in the processes $\pi\pi \to \pi\pi$, $K\bar{K}$ and $\eta\eta$ in the $I^G J^{PC} = 0^+2^{++}$ and the 1^+3^{--} sectors to study the f_2 and ρ_3 mesons respectively.

The Main Problems:

- Lack of crossing symmetry condition.
- Unsuitable behavior of phase shift in the vicinity of the $\pi\pi$ threshold.

Similar problems for S and P waves have been derived and presented in: Phys. Rev. D 83 (2011) 074004

• Further analysis presented a very precise determination for position of the σ pole in: Phys. Rev. Lett. 107 (2011) 072001

Proof of the results using another method: Phys. Rev. D 90, (2014) 116005

Definition of the problem

Lack of correct partial wave amplitudes for D and F waves in the processes $\pi\pi \to \pi\pi$, $K\bar{K}$ and $\eta\eta$ in the $I^G J^{PC} = 0^+2^{++}$ and the 1^+3^{--} sectors to study the f_2 and ρ_3 mesons respectively.

The Main Problems:

- Lack of crossing symmetry condition.
- Unsuitable behavior of phase shift in the vicinity of the $\pi\pi$ threshold.

Similar problems for S and P waves have been derived and presented in: Phys. Rev. D 83 (2011) 074004

Proof of the results using another method: Phys. Rev. D 90, (2014) 116005

Further analysis presented a very precise determination for position of the σ pole in: Phys. Rev. Lett. 107 (2011) 072001

• Old parameterizations are still used.

• Old parameterizations are still used.

• Specifying the dominant and ineffective states.

- Old parameterizations are still used.
- Specifying the dominant and ineffective states.
- Precise parameterizations of $\pi\pi$ amplitudes is crucial:
 - When high precision of the final state interactions is required.
 - To describe spectrum of light mesons decaying into $\pi\pi$ pairs.

- Old parameterizations are still used.
- Specifying the dominant and ineffective states.
- Precise parameterizations of $\pi\pi$ amplitudes is crucial:
 - When high precision of the final state interactions is required.
 - To describe spectrum of light mesons decaying into $\pi\pi$ pairs.
- Exotic mesons The CLAS12 Detector at Jefferson Lab. in the US (by the end of 2015)

- Old parameterizations are still used.
- Specifying the dominant and ineffective states.
- Precise parameterizations of $\pi\pi$ amplitudes is crucial:
 - When high precision of the final state interactions is required.
 - To describe spectrum of light mesons decaying into $\pi\pi$ pairs.
- Exotic mesons The CLAS12 Detector at Jefferson Lab. in the US (by the end of 2015)

Method

Dispersion relations with imposed crossing symmetry

Crossing Symmetry:

$$\overrightarrow{\boldsymbol{T}_{s}}(s,t) = \widehat{\boldsymbol{C}}_{st} \overrightarrow{\boldsymbol{T}_{t}}(t,s)$$

Once-subtracted Dispersion Relations:

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} = \sum_{l'=0}^{2} C_{st}^{ll'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{\ell'=0}^{3} \int_{4m_{\pi}^{2}}^{S_{max}} ds' \mathcal{K}_{\ell\ell'}^{ll'}(s,s') \operatorname{Im} f_{\ell'}^{l'}(s')^{in} + d_{\ell}^{I}(s),$$

"Subtracting term" "Kernel term" "Driving term"
 $a_{0}^{l'}$ is Subtracting constant = \overrightarrow{T}_{s} ($s = 4m_{\pi}^{2}, t = 0$)

Method

Dispersion relations with imposed crossing symmetry

Crossing Symmetry:

$$\overrightarrow{\boldsymbol{T}_{s}}(s,t) = \hat{\boldsymbol{C}}_{st} \overrightarrow{\boldsymbol{T}_{t}}(t,s)$$

Once-subtracted Dispersion Relations:

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} = \sum_{l'=0}^{2} C_{st}^{ll'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{\ell'=0}^{3} \int_{4m_{\pi}^{2}}^{S_{max}} ds' \mathcal{K}_{\ell\ell'}^{ll'}(s,s') \operatorname{Im} f_{\ell'}^{l'}(s')^{in} + d_{\ell}^{I}(s),$$

"Subtracting term" "Kernel term" "Driving term"
 $a_{0}^{l'}$ is Subtracting constant = \overrightarrow{T}_{s} ($s = 4m_{\pi}^{2}, t = 0$)

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} - \operatorname{Re} f_{\ell}^{I}(s)^{in} \longrightarrow 0$$

Method

Dispersion relations with imposed crossing symmetry

Crossing Symmetry:

$$\overrightarrow{\boldsymbol{T}_{s}}(s,t) = \hat{\boldsymbol{C}}_{st} \overrightarrow{\boldsymbol{T}_{t}}(t,s)$$

Once-subtracted Dispersion Relations:

$$\operatorname{Ref}_{\ell}^{I}(s)^{out} = \sum_{l'=0}^{2} C_{st}^{ll'} a_{0}^{l'} + \sum_{l'=0}^{2} \sum_{\ell'=0}^{3} \int_{4m_{\pi}^{2}}^{S_{max}} ds' \mathcal{K}_{\ell\ell'}^{ll'}(s,s') \operatorname{Im} f_{\ell'}^{l'}(s')^{in} + d_{\ell}^{I}(s),$$

"Subtracting term" "Kernel term" "Driving term"
 $a_{0}^{l'}$ is Subtracting constant = \overrightarrow{T}_{s} ($s = 4m_{\pi}^{2}, t = 0$)

$$\operatorname{Re} f_{\ell}^{I}(s)^{out} - \operatorname{Re} f_{\ell}^{I}(s)^{in} \longrightarrow 0$$

Improving the paremeters for 0^+2^{++} and 1^+3^{--} sectors

The total χ^2 was composed of six parts:

$$\chi^{2} = \sum_{j=1}^{2} \chi^{2}_{Data}(j) + \sum_{j'=0}^{3} \chi^{2}_{DR}(j')$$
(1)

where j = 1, 2 itemizes the *D* and *F* partial waves, respectively and j' = 0, ..., 3 itemizes all partial waves. Corresponding $\chi^2_{Data}(j)$ and $\chi^2_{DR}(j')$ are expressed by

$$\chi^{2}_{Data}(j) = \sum_{i=1}^{N^{j}_{\delta}} \frac{(\delta^{exp}_{i} - \delta^{th}_{i})^{2}}{(\Delta\delta^{exp}_{i})^{2}} + \sum_{i=1}^{N^{j}_{\eta}} \frac{(\eta^{exp}_{i} - \eta^{th}_{i})^{2}}{(\Delta\eta^{exp}_{i})^{2}}$$
(2)

and

$$\chi^2_{DR}(j') = \sum_{i=1}^{N_{DR}} \left(\frac{\operatorname{Ref}_{\ell}^{I}(s_i)^{out} - \operatorname{Ref}_{\ell}^{I}(s_i)^{in}}{\Delta_{DR}} \right)^2$$

Improving the paremeters for 0^+2^{++} and 1^+3^{--} sectors

The total χ^2 was composed of six parts:

$$\chi^{2} = \sum_{j=1}^{2} \chi^{2}_{Data}(j) + \sum_{j'=0}^{3} \chi^{2}_{DR}(j')$$
(1)

where j = 1, 2 itemizes the *D* and *F* partial waves, respectively and j' = 0, ..., 3 itemizes all partial waves. Corresponding $\chi^2_{Data}(j)$ and $\chi^2_{DR}(j')$ are expressed by

$$\chi^{2}_{Data}(j) = \sum_{i=1}^{N^{j}_{\delta}} \frac{(\delta^{exp}_{i} - \delta^{th}_{i})^{2}}{(\Delta\delta^{exp}_{i})^{2}} + \sum_{i=1}^{N^{j}_{\eta}} \frac{(\eta^{exp}_{i} - \eta^{th}_{i})^{2}}{(\Delta\eta^{exp}_{i})^{2}}$$
(2)

and

$$\chi^2_{DR}(j') = \sum_{i=1}^{N_{DR}} \left(\frac{\operatorname{Re} f_{\ell}^{I}(s_i)^{out} - \operatorname{Re} f_{\ell}^{I}(s_i)^{in}}{\Delta_{DR}} \right)^2$$
(3)

Conclusions

• Achieved to new the amplitudes for *D* and *F* waves which very well describe the experimental data.

V. Nazari (IFJ-PAN)

Conclusions

- Achieved to new the amplitudes for *D* and *F* waves which very well describe the experimental data.
- New amplitudes fulfilled crossing symmetry very well.
- The dominant and the ineffective states of 0^+2^{++} sector:

States:	$f_2(1270)$	$f_2(1430)$	$f_2(1525)$	$f_2(1600)$	$f_2(1730)$
$f_2(1810)$	$f_2(1960)$	$f_2(2000)$	f ₂ (2020)	<i>f</i> ₂ (2240)	f ₂ (2410)

- The dominant and the ineffective states of 1⁺3⁻⁻ sector: States: ρ₃(1690) ρ₃(1950)
- Values of the χ^2 for re-fitted (after fitting) amplitudes: n.d.f= 430

	χ^2	$\chi^2_{Data}(D)$	$\chi^2_{Data}(F)$	χ^2_{DR}	$\chi^2/n.d.f$
re-fitted	882.5	247.6	483.7	151.1	2.05

Thank You