Forward-backward asymmetries for b and t quarks at CLICdp

Paweł Sopicki IFJ PAN (on behalf of the CLICdp Collaboration)

Outline

- Introduction & motivation
- Analysis details
 - Generator level
 - Jets and b/c tagging
- Outlook & Summary

Introduction & Motivation

 $A^{b/t}_{FB}$ - forward-backward assymetry of b/t quarks produced in $e^+e^- \rightarrow b\overline{b}/t\overline{t}$ Important tests of the Standard Model.

$$A_{FB} = (N_F - N_B) / (N_F + N_B)$$

Allows the effective weak mixing angle to be determined with high precision.

Such measurements may show some effects of Beyond-SM physics

For example, the left-handed 3rd generation states could be composite...

What if precision tests of b-quark would show up as a deviation from SM... Should the B-factories already see such an effect?

Not necessarily: depending on how sensitive we can get on ${\bf A}^b_{\ \ FB}$, especially at higher energies

Analysis details

First look into the A^b_{FB} measurement potential. Next step: move to top quarks

Monte Carlo simulations computed for the ILD detector concept

- \rightarrow Source of signal: $b\overline{b}$ pairs in $e^+e^- \rightarrow q\overline{q}$ type MC
- \rightarrow As additional source of background $e^+e^- \rightarrow qqvv$ processess will be considered

Jet definition

kT algorithm: clustering mode with 2 exclusive jets energy scheme for recombination

Radius parameter from 0.5 to 1.5

More details on detector concepts

→ see talk by Lucie Linssen

Generator level

Aiming for this

region

Acceptance in polar angle – down to 7°

Beauty/charm tagging

Tagging procedures for b/c quarks available for testing

> **BDT** discriminators outputs are provided for each jet separately

~2% wrongly tagged in the b-tagged set

0.5 - Cut value for b/no-c taging

Summary & Outlook

- Sensitivity on beauty/top forward-backward asymmetries worth checking
- Very early stage of the analysis
- b/c-tagging procedure gives promising results
- A LOT of room for development and improvements

Thank you for your attention

Backup slides

Reconstructed level

Reconstructed level

R = 1.5 seems to have a slightly better jet resolution

Pandora set selection shifts a peak (see also in backup)

Chosen for further tests: 'normal' Pandora R=1.5

Reconstructed level

Invariant mass of two reconstructed jets