
Physics at the CLIC electron-positron linear collider

Sophie Redford, Philipp Roloff (CERN) on behalf of the CLICdp collaboration

XXI EPIPHANY Conference on Future High Energy Colliders, Cracow, 8-10 January 2015

Overview:

- Introduction
- Precision SM measurements:
 - Higgs boson
 - top quark
 - Prospects for BSM physics
 - Summary and conclusions

CLIC energy stages

CLIC would be implemented in stages:

- Optimised running conditions over a wide energy range
- The energy stages are defined by physics (with additional technical considerations)

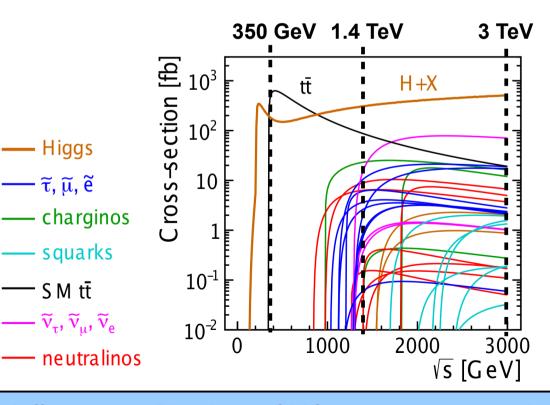
— Higgs

 $---\widetilde{\tau}, \widetilde{\mu}, \widetilde{e}$

— squarks

 $---\widetilde{\nu}_{\tau},\widetilde{\nu}_{\mu},\widetilde{\nu}_{e}$

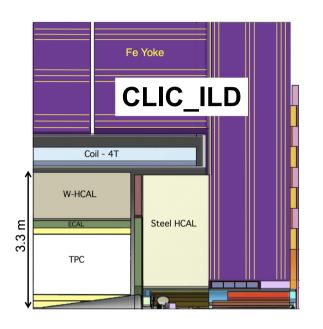
--- S M $t\bar{t}$

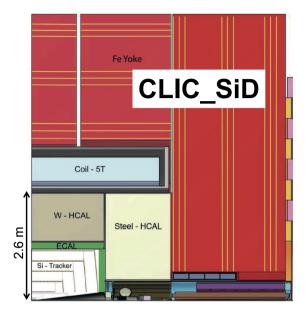

→ The strategy can be adapted to discoveries at the LHC at 13/14 TeV

Example scenario assumed for this talk:

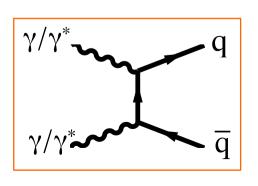
- Stage 1: 350 / 375 GeV, 500 fb⁻¹ (under discussion) SM Higgs physics, tt threshold scan
- Stage 2: 1.4 TeV, 1.5 ab⁻¹ Targeted at BSM physics, rare Higgs processes and decays
- Stage 3: 3 TeV, 2 ab⁻¹ Targeted at BSM physics, rare Higgs processes and decays

(each stage corresponds to 4-5 years)

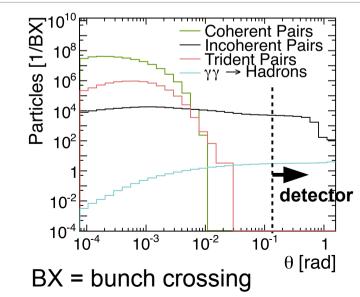

New CLIC staging baseline → see talk by Steinar Stapnes



Detector benchmark studies

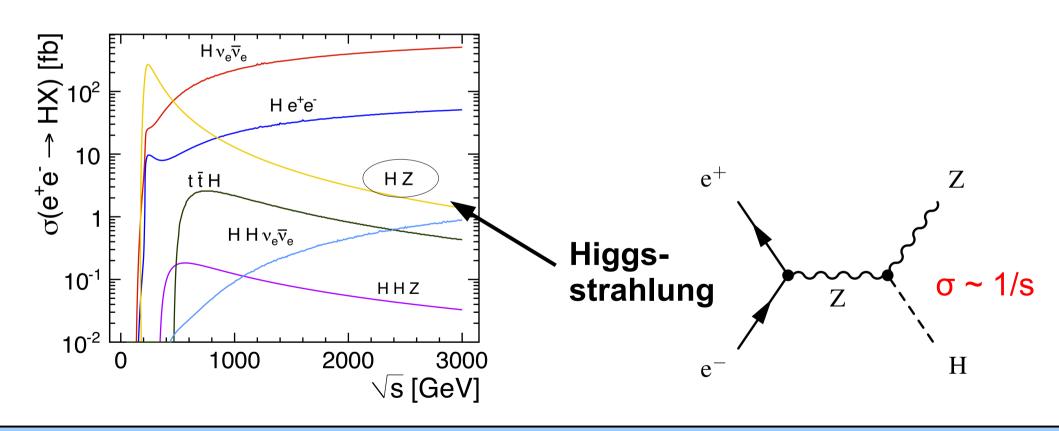

- Studies in this talk obtained using the CLIC_ILD and CLIC_SiD detector concepts
- New CLIC detector concept in preparation

More details → see talk by Lucie Linssen

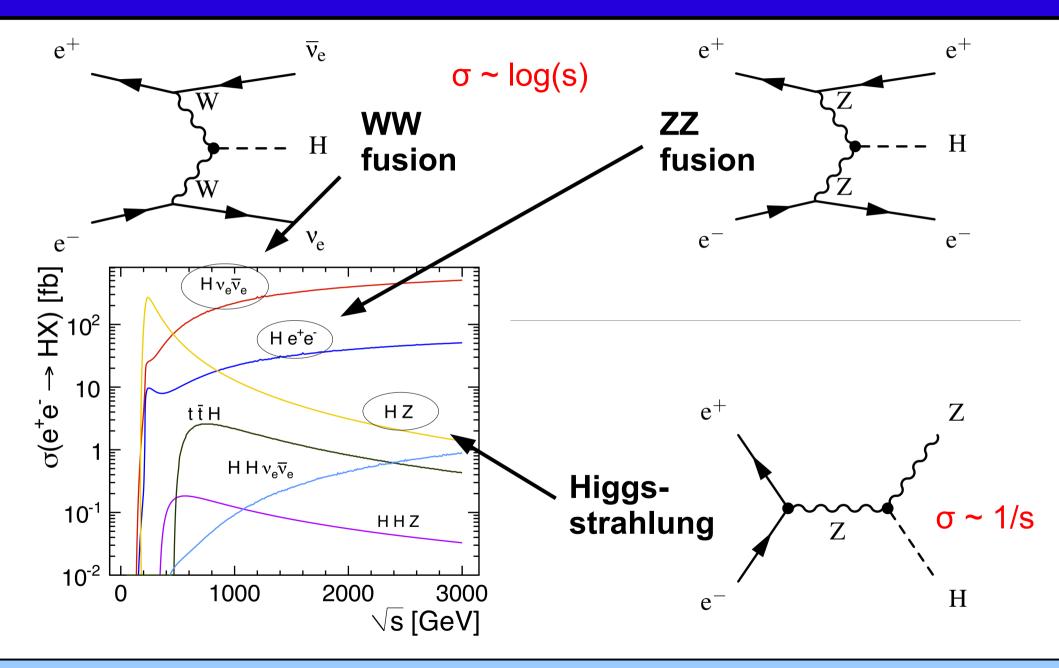


 Pile-up from γγ → hadrons interactions overlaid to the physics events

- 1.3(3.2) events per BX at 1.4(3) TeV
- Suppressed using timing capabilities of the detectors and hadron-collider type jet algorithms

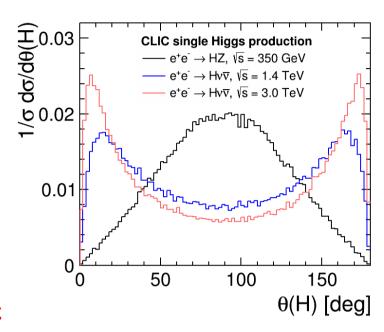


CLIC Higgs capabilities:


- Single Higgs production
- Processes at high energy
 - Combined analysis

[all results as shown at LCWS14, http://lcws14.vinca.rs]

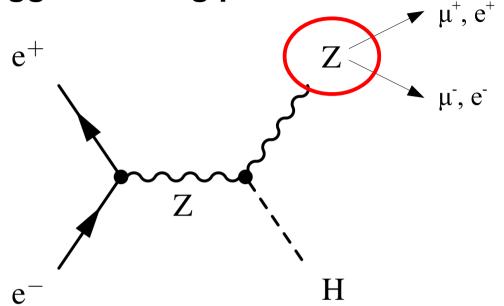
Single Higgs production at CLIC

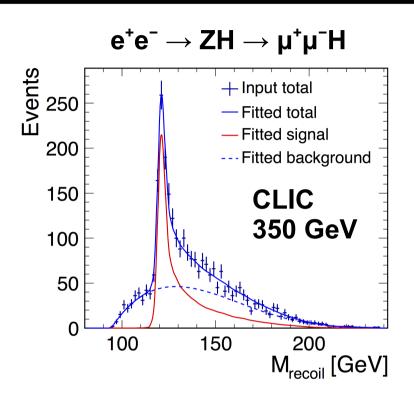


Single Higgs production at CLIC

Some numbers

31	-0.6.1/		
5.	50 GeV	1.4 TeV	3 TeV
# ZH events	0 fb ⁻¹ 68 000 17 000 3 700	1.5 ab ⁻¹ 20.000 370.000	2 ab ⁻¹ 11 000 830 000 84 000

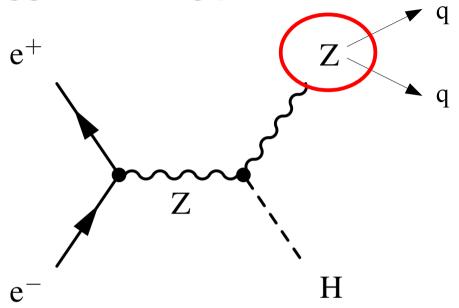

- Large samples of Higgs bosons produced at CLIC
- Measurements at high energy benefit from good detectors in the forward region

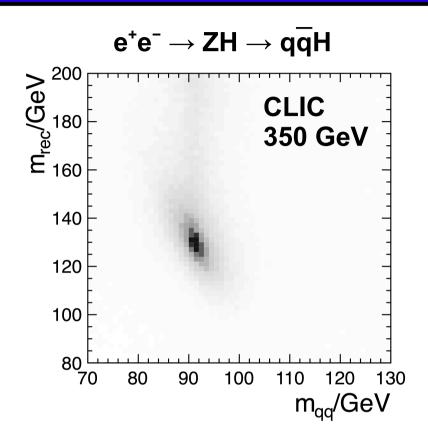

 Benchmark studies assume unpolarised beams

Polarization	Enhancement factor			
$P(\mathrm{e}^-):P(\mathrm{e}^+)$	$\overline{e^+e^- \to ZH}$	$e^+e^- \to H \nu_e \overline{\nu}_e$		
unpolarized	1.00	1.00		
-80%: 0%	1.18	1.80		

Higgsstrahlung at 350 GeV (1)

Higgsstrahlung process

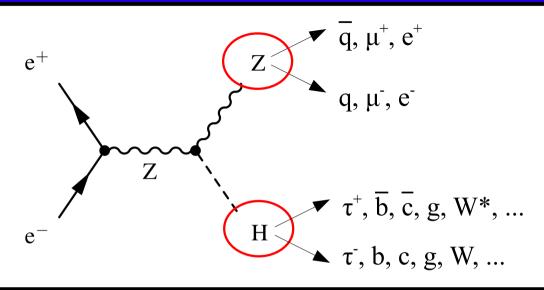



HZ events can be identified from Z recoil mass \rightarrow model independent measurements of the g_{HZZ} coupling

$$\Delta(\sigma_{HZ})$$
 / $\sigma_{HZ} \approx 4\% \rightarrow \Delta(g_{HZZ})$ / $g_{HZZ} \approx 2\%$ from $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$

Higgsstrahlung at 350 GeV (2)

Higgsstrahlung process



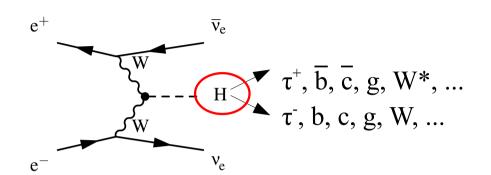
- Substantial improvement using hadronic Z decays
- Challenge: $Z \rightarrow q\overline{q}$ reconstruction may depend on Higgs decay mode
- Even extreme variations of the SM Higgs BRs lead to bias ≤ ½ stat. error

$$\Delta(\sigma_{HZ})$$
 / $\sigma_{HZ} \approx 1.8\% \rightarrow \Delta(g_{HZZ})$ / $g_{HZZ} \approx 0.9\%$ from hadronic Z decays

σ x BR measurements at 350 GeV

Measurement	Observable	Stat. precision
$\sigma(HZ) \times BR(H \to \tau^+\tau^-)$	$g^2_{HZZ}g^2_{H\tau\tau}$ / Γ_H	6.2%
$\sigma(HZ) \times BR(H \rightarrow b\overline{b})$	$g_{_{_{_{\hspace{-0.05cm}HZZ}}}^{_{_{_{\hspace{-0.05cm}HZD}}}}^{_{_{_{_{\hspace{-0.05cm}HDb}}}}}$ / $\Gamma_{_{_{_{\hspace{-0.05cm}H}}}$	1% (estimated)
$\sigma(HZ) \times BR(H \rightarrow c\overline{c})$	$g_{_{_{_{_{\hspace{1em}HZZ}}}}^2}^2g_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$	5% (estimated)
$\sigma(HZ) \times BR(H \rightarrow gg)$		6% (estimated)
$\sigma(HZ) \times BR(H \to WW^*)$	$g^2_{_{HZZ}}g^2_{_{HWW}}$ / $\Gamma_{_{H}}$	2% (estimated)
$\sigma(Hv_e^{\overline{v}_e}) \times BR(H \rightarrow b\overline{b})$	$g^2_{_{HWW}}g^2_{_{Hbb}}$ / $\Gamma_{_{H}}$	3% (estimated)

Assuming unpolarised beams

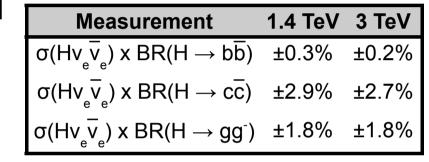

In addition: BR(H \rightarrow inv.) < 0.97% at 90% C.L.

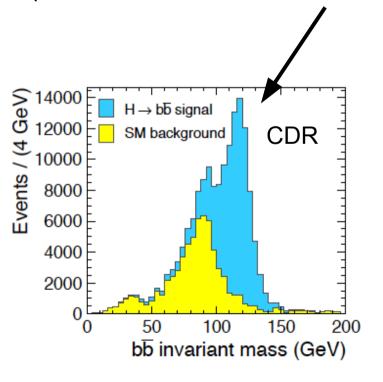
Assuming unpolarised beams

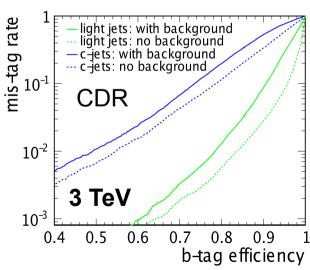
Measurements using Hv v events

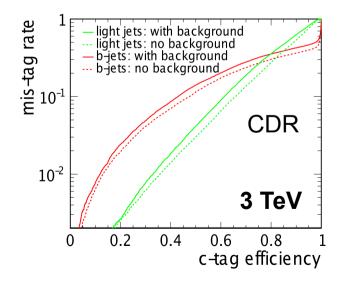
Large Higgs samples produced in WW fusion at high energy:

- \rightarrow Precision measurements of σ x BR
- → Access to rarer decay modes




Measurement	Observable	Stat. precision (1.4 TeV)	Stat. precision (3 TeV)
$\sigma(Hv_e^{\overline{v}_e}) \times BR(H \to \tau^+\tau^-)$	$g^2_{HWW}g^2_{H\pi\pi}$ / Γ_H	4.2%	tbd
$\sigma(Hv_e^{-}\overline{v}_e) \times BR(H \to b\overline{b})$	$g^2_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}g^2_{_{_{_{_{_{_{_{_{1}}}}}}}}}$ / $\Gamma_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$	0.3%	0.2%
$\sigma(Hv_e^{-}v_e^{-}) \times BR(H \rightarrow c\bar{c})$	$g^2_{HWW}g^2_{Hcc}$ / Γ_H	2.9%	2.7%
$\sigma(Hv_e^{-}v_e) \times BR(H \rightarrow gg)$		1.8%	1.8%
$\sigma(Hv_e^-\overline{v}_e) \times BR(H \to \mu^+\mu^-)$	$g^2_{_{HWW}}g^2_{_{H\mu\mu}}$ / $\Gamma_{_H}$	38%	16%
$\sigma(Hv_e^{-}v_e) \times BR(H \to \gamma\gamma)$		15%	tbd
$\sigma(Hv_e\overline{v}_e) \times BR(H \to Z\gamma)$		42%	tbd
$\sigma(Hv_e^{-}v_e) \times BR(H \rightarrow ZZ^*)$	$g_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}^{2}g_{_{_{_{_{_{_{_{_{1}}}}}}}}^{2}}^{2}$ / $\Gamma_{_{_{_{_{_{_{_{1}}}}}}}$	3% (estimated)	2% (estimated)
$\sigma(Hv_e^{-}v_e^{-}) \times BR(H \to WW^*)$	$g_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}^{4}$ / $\Gamma_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}$	1.4%	0.9% (estimated)

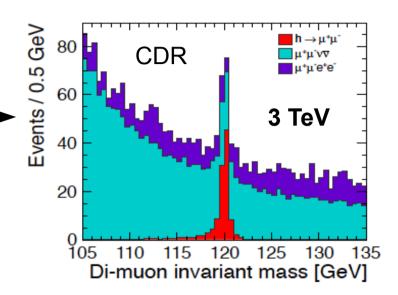

Precision measurements

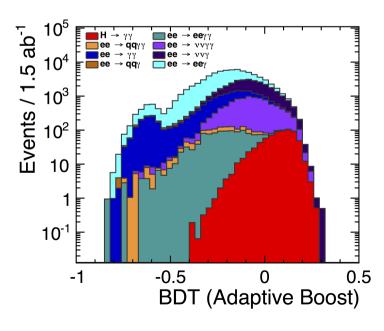

H → bb/cc/gg:

- Separation of the different hadronic final states using precise flavour tagging
- H → cc and gg impossible at hadron colliders
- In addition, the Higgs mass can be extracted from the H → bb invariant mass distribution (±40MeV at 1.4 TeV, ±33MeV at 3 TeV)

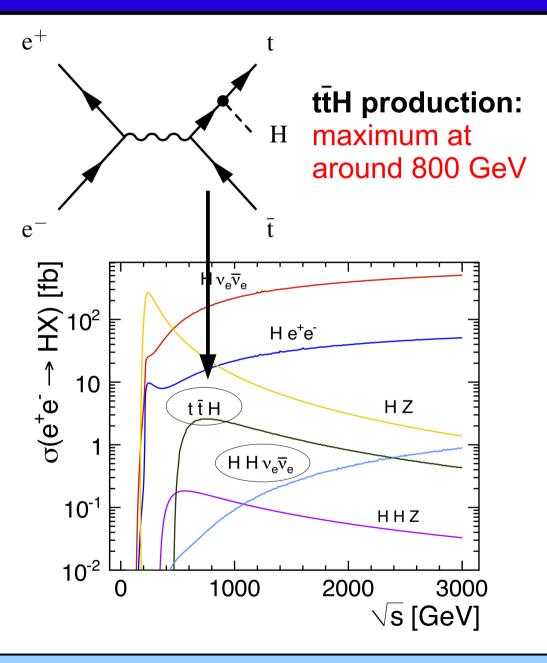
Rare decays

$\sigma(Hv_e^{}\overline{v}_e) \times BR(H \rightarrow \mu^{\dagger}\mu^{})$:

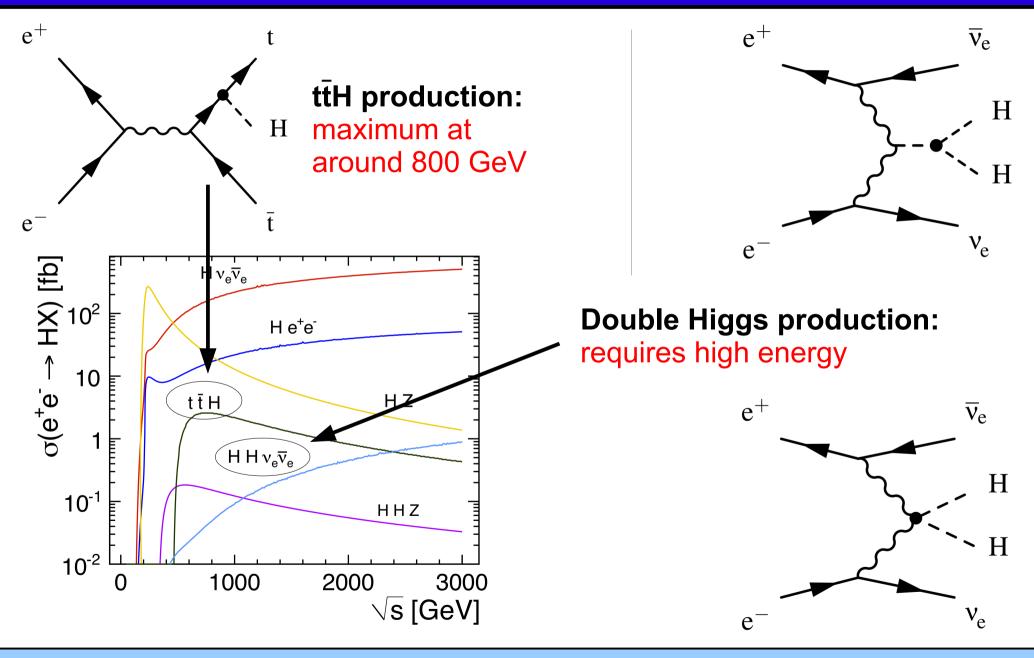

- Very small BR (≈ 0.022%)
- Requires precision tracking
- $\Delta(\sigma \times BR) = 38\%(16\%)$ at 1.4(3) TeV

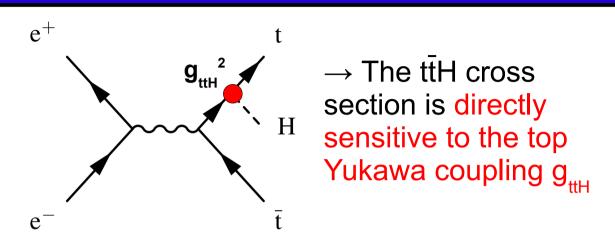

$\sigma(Hv_e\overline{v_e}) \times BR(H \rightarrow \gamma\gamma)$:

- BR($H\rightarrow \gamma\gamma$) $\approx 0.23\%$
- $\Delta(\sigma \times BR) = 15\%$ at 1.4 TeV


$\sigma(Hv_e\overline{v}_e) \times BR(H \rightarrow Z\gamma)$:

- BR($H \rightarrow Z\gamma$) $\approx 0.16\%$
- Hadronic Z decays usable (in contrast to hadron colliders)
- $\Delta(\sigma \times BR) = 42\%$ at 1.4 TeV



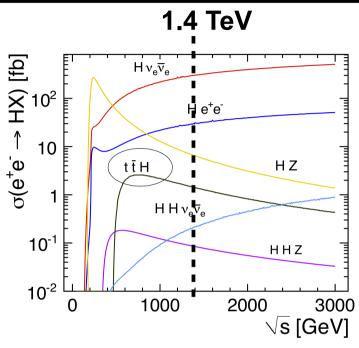

Other processes at higher energy

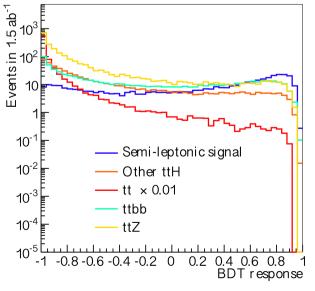
Other processes at higher energy

The ttH final state at 1.4 TeV

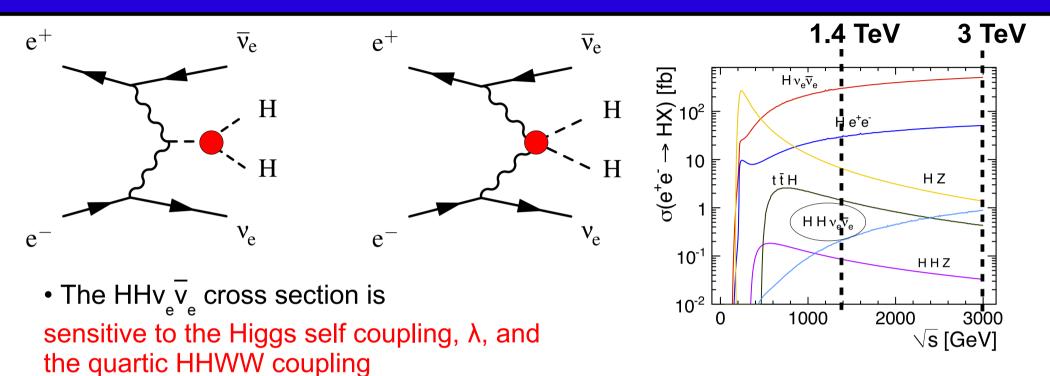
Investigated final states:

"6 jets": $t(\rightarrow qqb)\underline{t}(\rightarrow lv\overline{b})H(\rightarrow b\overline{b})$


"8 jets": $t(\rightarrow qqb)t(\rightarrow qqb)H(\rightarrow bb)$


→ Four b-quarks in the final state

Combination of both final states:

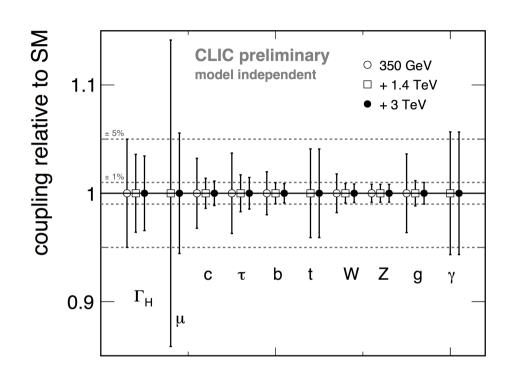

 $\Delta \sigma(t\bar{t}H) / \sigma(t\bar{t}H) = 8.4\%$

$$\rightarrow \Delta g_{HH} / g_{HH} = 4.5\%$$

Double Higgs production at high energy

- Only 225 (1200) $e^+e^- \rightarrow HHv_e^-\overline{v}_e$ events at 1.4 (3) TeV
- → high energy and luminosity crucial

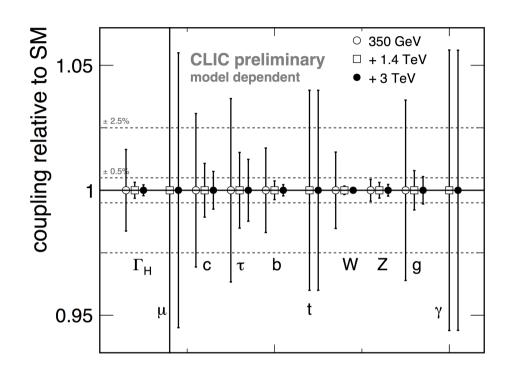
Measurement	1.4 TeV	3 TeV
$\Delta(g_{HHWW})$	7% (preliminary)	3% (preliminary)
$\Delta(\lambda)$	32%	16%
$\Delta(\lambda)$ for P(e ⁻) = -80%	24%	12%


CLIC Higgs studies

			Statistical precision		
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500 \; { m fb}^{-1}$	$1.5 {\rm \ ab^{-1}}$	$2.0 { m ~ab^{-1}}$
ZH	Recoil mass distribution	$m_{ m H}$	120 MeV	_	_
ZH	$\sigma(HZ) \times BR(H \to invisible)$	$\Gamma_{ m inv}$	0.6%	_	_
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd	_	_
$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	_	40 MeV*	33 MeV*
ZH	$\sigma({ m HZ}) imes {\it BR}({ m Z} ightarrow \ell^+ \ell^-)$	$g^2_{ m HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$	$g^2_{ m HZZ}$	1.8%	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	$1\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	$5\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		$6\%^\dagger$	_	_
ZH	$\sigma({ m HZ}) imes BR({ m H} ightarrow au^+ au^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2/\Gamma_{ m H}$	6.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g_{ m HZZ}^2 g_{ m HWW}^2/\Gamma_{ m H}$	$2\%^\dagger$	_	_
ZH	$\sigma(HZ) \times BR(H \to ZZ^*)$	$g_{ m HZZ}^2 g_{ m HZZ}^2 / \Gamma_{ m H}$	tbd	_	_
$Hv_e \overline{v}_e$	$\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to b\overline{b})$	$g_{ m HWW}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	$3\%^\dagger$	0.3%	0.2%
$H\nu_e^{}\overline{\nu}_e^{}$	$\sigma(H\nu_{e}\overline{\nu}_{e})\times \textit{BR}(H\to c\overline{c})$	$g_{ m HWW}^2 g_{ m Hcc}^2/\Gamma_{ m H}$	_	2.9%	2.7%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}})\times \mathit{BR}(\mathrm{H}\to\mathrm{gg})$		_	1.8%	1.8%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} ightarrow \tau^+ \tau^-)$	$g_{ m HWW}^2 g_{ m H au au}^2/\Gamma_{ m H}$	_	4.2%	tbd
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} o \mu^{+} \mu^{-})$	$g_{ m HWW}^2 g_{ m H\mu\mu}^2/\Gamma_{ m H}$	_	38%	16%
$H\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} o \gamma \gamma)$		_	15%	tbd
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H} \nu_{\mathrm{e}} \overline{\nu}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} o \mathrm{Z} \gamma)$		_	42%	tbd
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H}\nu_{e}\overline{\nu}_{e})\times\textit{BR}(\mathrm{H}\to\mathrm{W}\mathrm{W}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	1.4%	$0.9\%^\dagger$
$Hv_e\overline{v}_e$	$\sigma(H\nu_{\rm e}\overline{\nu}_{\rm e}) \times BR(H \to ZZ^*)$	$g_{ m HWW}^2 g_{ m HZZ}^2/\Gamma_{ m H}$	_	$3\%^\dagger$	$2\%^\dagger$
$\mathrm{He^+e^-}$	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2/\Gamma_{ m H}$	_	$1\%^\dagger$	$0.7\%^\dagger$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8%	tbd
$HH\nu_{e}\overline{\nu}_{e}$	$\sigma(\mathrm{HH} v_e \overline{v_e})$	g _{HHWW}	_	7%*	3%*
$HHv_{e}^{}\overline{v}_{e}$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_\mathrm{e}})$	λ	_	32%	16%
$HHv_{e}\overline{v}_{e}$	with -80% e ⁻ polarization	λ	_	24%	12%

*: preliminary

†: estimated


Putting it all together

Parameter	Measurement precision			
	350 GeV + 1.4 TeV $500 \text{ fb}^{-1} + 1.5 \text{ ab}^{-1}$		$+3.0 \text{ TeV} +2.0 \text{ ab}^{-1}$	
gHZZ	0.8 %	0.8 %	0.8 %	
g_{HWW}	1.8 %	0.9%	0.9%	
gHbb	2.0%	1.0 %	0.9~%	
$g_{\rm Hcc}$	3.2 %	1.4 %	1.1 %	
$g_{ m H au au}$	3.7 %	1.7 %	1.5 %	
$g_{ m H\mu\mu}$	_	14.1 %	5.6 %	
<i>g</i> Htt	_	4.1 %	\leq 4.1 %	
$g_{ m Hgg}^{\dagger}$	3.6 %	1.2 %	1.0 %	
$g_{ m H\gamma\gamma}^{\dagger}$		5.7 %	< 5.7 %	
$\Gamma_{ m H}$	5.0 %	3.6 %	3.4 %	

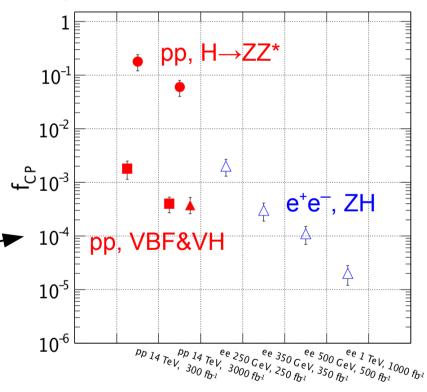
- Fully model-independent, only possible at a lepton collider
- All results limited by 0.8% from $\sigma(HZ)$ measurement
- The Higgs width is extracted with 5 3.5% precision

Analysis similar to LHC experiments

Parameter	Measurement precision			
	350 GeV 500 fb ⁻¹	$+ 1.4 \text{ TeV} + 1.5 \text{ ab}^{-1}$	$+3.0 \text{ TeV} +2.0 \text{ ab}^{-1}$	
$\kappa_{ m HZZ}$	0.44 %	0.31 %	0.23 %	
$\kappa_{ m HWW}$	1.5 %	0.17 %	0.11 %	
$\kappa_{ m Hbb}$	1.7 %	0.37 %	0.22%	
$\kappa_{\rm Hcc}$	3.1 %	1.1 %	0.75 %	
$\kappa_{ m H au au}$	3.7 %	1.5 %	1.2 %	
$\kappa_{ m H\mu\mu}$	_	14.1 %	5.5 %	
$\kappa_{ m Htt}$	_	4.0%	$\leq 4.0\%$	
$\kappa_{ m Hgg}$	3.6 %	0.79%	0.55 %	
$\kappa_{ m H\gamma\gamma}$		5.6 %	< 5.6 %	
$\Gamma_{\mathrm{H},md,derived}$	1.6 %	0.32 %	0.22 %	

$$\kappa_i^2 = \frac{\Gamma_i}{\Gamma_i^{\mathrm{SM}}}$$

No invisible decays:

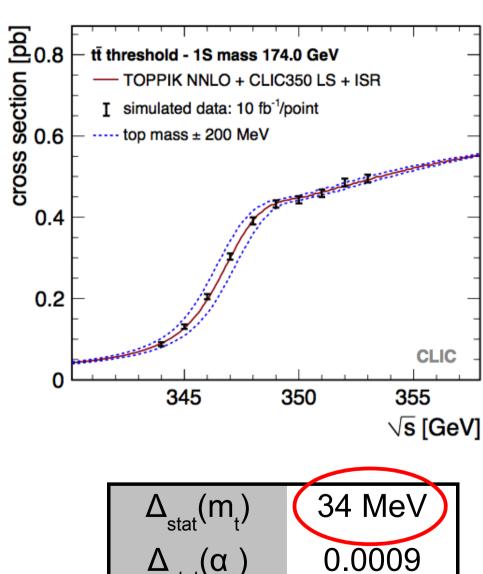

$$\Gamma_{\rm H,model} = \sum_{i} \kappa_i^2 \cdot BR_i^{\rm SM}$$

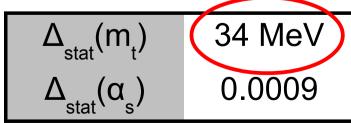
Sub-percent precisions at high energy

→ Results strongly dependent on fit assumptions

What's next for Higgs physics?

- Single Higgs production: addressing a few channels not covered so far $(e^+e^- \to Hv_e^-v_e^- \to WW^*v_e^-v_e^-$ at 350 GeV, H $\to \gamma\gamma$ at 3 TeV, ZZ fusion at 3 TeV)
- Reanalysis of double Higgs production: add the HH → bbWW* final state (40% more events compared to HH → bbbb alone)
- Looking at differential distributions:
 example: CP properties of the Higgs boson
- <u>using ttH events:</u> extension of top Yukawa coupling study
- using WW and ZZ fusion events:
 large statistics at CLIC promising

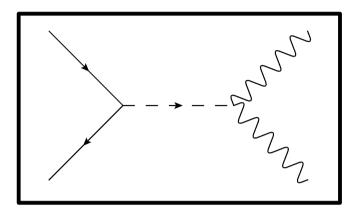



Snowmass Higgs WG report, arXiv:1310.8361

Top mass

tt threshold scan:

- Measurements at 10 different centre-of-mass energies (10 fb⁻¹ each), data also useful for Higgs physics
- Theoretical uncertainty on the order of 100 MeV when transforming the measured 1S mass to the MS mass scheme
- Precision at the LHC limited to about 500 MeV

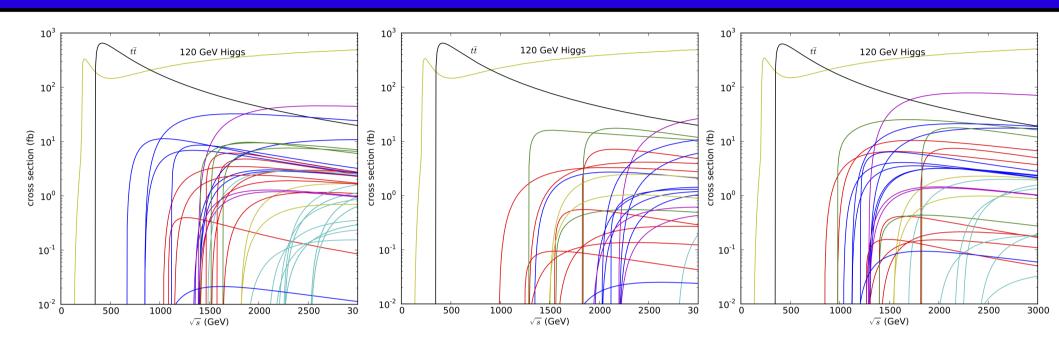

Prospects for BSM physics:

- Direct searches (example: SUSY)
- Sensitivity of precision measurements

Prospects for BSM physics

Two approaches:

- 1.) Pair production of new particles if $M \le \sqrt{s} / 2$
- → CLIC especially attractive for electroweak states
- → Precision measurement of new particle masses and couplings



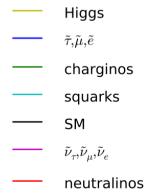
Many examples of SUSY particle production studied for CLIC CDR

- 2.) Indirect searches through precision observables
- → possibility to reach much higher mass scales

One of the priorities for future benchmarking studies

Investigated SUSY models

CDR Model I, 3 TeV:

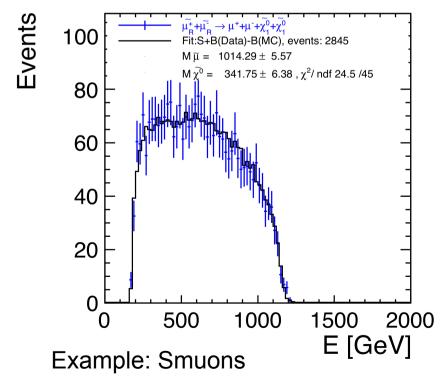

- Squarks
- Heavy Higgs

CDR Model II, 3 TeV:

- Smuons, selectrons
- Gauginos

CDR Model III, 1.4 TeV:

- Smuons, selectrons
- Staus
- Gauginos



Wider applicability than only SUSY: Reconstructed particles can be classified simply as states of given mass, spin and quantum numbers

The simplest case: sleptons at 3 TeV

- Slepton production very clean at CLIC
- Slepton masses ≈ 1 TeV
- Investigated channels include:

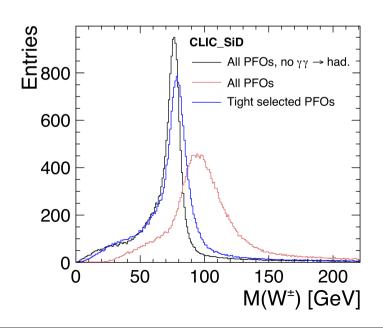
$$\begin{split} e^{+}e^{-} &\to \tilde{\mu}_{R}^{+}\tilde{\mu}_{R}^{-} \to \mu^{+}\mu^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \\ e^{+}e^{-} &\to \tilde{e}_{R}^{+}\tilde{e}_{R}^{-} \to e^{+}e^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \\ e^{+}e^{-} &\to \tilde{\nu}_{e}\tilde{\nu}_{e} \to e^{+}e^{-}W^{+}W^{-}\,\tilde{\chi}_{1}^{0}\,\tilde{\chi}_{1}^{0} \end{split}$$

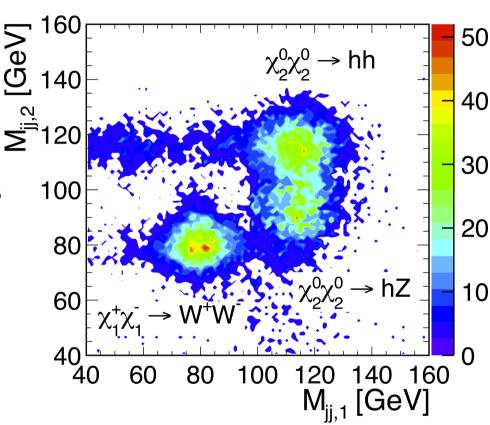
muons

- Leptons and missing energy
- Masses from endpoints of energy spectra

$$m(\tilde{\mu}_{R}) : \pm 5.6 \,\text{GeV}$$

 $m(\tilde{e}_{R}) : \pm 2.8 \,\text{GeV}$
 $m(\tilde{v}_{e}) : \pm 3.9 \,\text{GeV}$
 $m(\tilde{\chi}_{1}^{0}) : \pm 3.0 \,\text{GeV}$
 $m(\tilde{\chi}_{1}^{\pm}) : \pm 3.7 \,\text{GeV}$

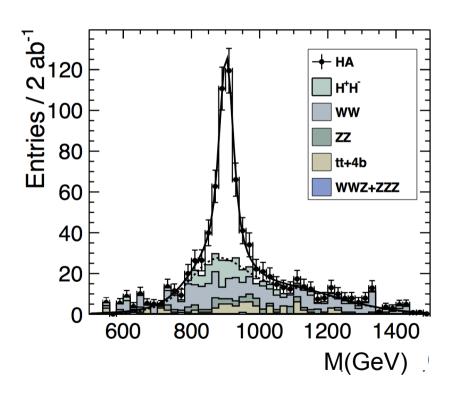

Precisions of a few GeV achievable

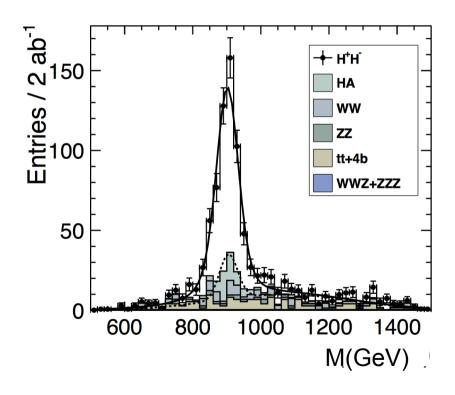

Hadronic final states: gauginos at 3 TeV

Chargino and neutralino pair production:

Reconstruct W[±]/Z/h in hadronic decays

→ four jets and missing energy




Precision on the measured gaugino masses (few hundred GeV): 1 - 1.5%

Heavy Higgs bosons at 3 TeV

Heavy Higgs bosons:

 $e^+e^- \rightarrow HA \rightarrow b\overline{b}b\overline{b}$ $e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t}$ (H, A and H[±] almost degenerate in mass) Complex final states

Accuracy of the heavy Higgs mass measurements: ≈0.3%

Summary of the SUSY studies

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
3.0	Sleptons	$\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} \rightarrow \mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ $\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-} \rightarrow e^{+}e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$ $\widetilde{\nu}_{e}\widetilde{\nu}_{e} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$	II	$ ilde{\ell}$ mass $ ilde{\chi}_1^0$ mass $ ilde{\ell}$ mass $ ilde{\chi}_1^0$ mass $ ilde{\ell}$ mass $ ilde{\ell}$ mass $ ilde{\ell}$ mass	1010.8 340.3 1010.8 340.3 1097.2	0.6% 1.9% 0.3% 1.0% 0.4%
3.0	Chargino Neutralino	$egin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \mathrm{W}^+ \mathrm{W}^- \ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 ightarrow \mathrm{h}/\mathrm{Z}^0 \mathrm{h}/\mathrm{Z}^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$	II	$\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_1^{\pm}$ mass $\widetilde{\chi}_2^{0}$ mass	643.2 643.1	0.6% 1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R\widetilde{q}_R o q\overline{q}\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	I	\widetilde{q}_R mass	1123.7	0.52%
3.0	Heavy Higgs	$\begin{array}{c} H^0A^0 \rightarrow b\overline{b}b\overline{b} \\ H^+H^- \rightarrow t\overline{b}b\overline{t} \end{array}$	I	H^0/A^0 mass H^{\pm} mass	902.4/902.6 906.3	0.3% 0.3%
1.4	Sleptons	$\begin{split} &\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \\ &\widetilde{e}_R^+ \widetilde{e}_R^- \to e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \\ &\widetilde{\nu}_e \widetilde{\nu}_e \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 e^+ e^- W^+ W^- \end{split}$	III	$\begin{array}{c} \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^0 \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\ell} \text{ mass} \\ \widetilde{\chi}_1^{\pm} \text{ mass} \end{array}$	560.8 357.8 558.1 357.1 644.3 487.6	0.1% 0.1% 0.1% 0.1% 2.5% 2.7%
1.4	Stau	$\widetilde{\mathfrak{r}}_1^+ \widetilde{\mathfrak{r}}_1^- o \mathfrak{r}^+ \mathfrak{r}^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{\tau}_1$ mass	517	2.0%
1.4	Chargino Neutralino	$ \begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \to h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array} $	III	$\widetilde{\chi}_1^\pm$ mass $\widetilde{\chi}_2^0$ mass	487 487	0.2% 0.1%

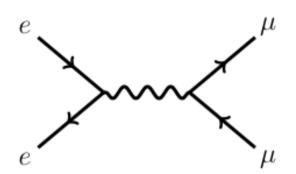
Precision studies of e⁺e⁻ → µ⁺µ⁻

Minimal anomaly-free Z' model:

Charge of the SM fermions under U(1)' symmetry:

$$Q_f = g_Y'(Y_f) + g'_{BL}(B-L)_f$$

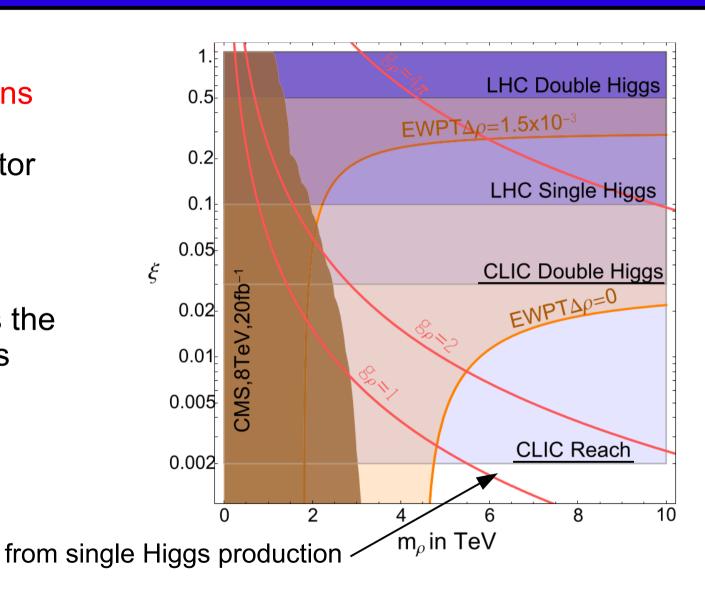
Observables:


- total e⁺e⁻ → μ⁺μ⁻ cross section
- forward-backward-asymmetry
- left-right asymmetry (±80% e⁻ polarisation)

If LHC discovers Z' (e.g. for M = 5 TeV):

Precise measurement of the effective couplings

Otherwise:


Discovery reach up to tens of TeV (depending on the couplings)

Composite Higgs bosons

- Higgs as composite bound state of fermions
- m_{ρ} : mass of the vector resonance of the composite theory
- $\xi = (v / f)^2$ measures the strengths of the Higgs interactions

CLIC provides an indirect probe of a Higgs composite scale of 70 TeV

What's next for BSM?

- Interesting SUSY signatures not yet studied for CLIC:
 - 1.) Gauginos/Higgsinos with small mass splittings
 - Main signal: γ + missing energy + soft particles
 (challenging in the presence of beam-induced backgrounds)
 - 2.) Top squark production
 - e.g. $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0 \rightarrow \text{boosted top quarks}$
- Model-indepent searches for Dark Matter using the γ + missing energy final state
- Higher-dimensional effective operators
- Hidden sector searches, more on compositeness, weakly interacting exotica, ...

Crucial: need to be ready to respond to theoretical interpretation of new LHC data

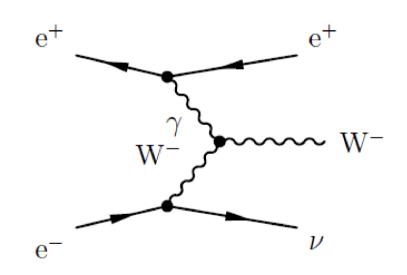
Precision top as a tool for BSM

tt events:

- So far focussed on top mass at lower energies (350 GeV and 500 GeV)
- Explore potential of tt events to probe for new physics, examples:

 - A_{FB}^t (and A_{FB}^b)
 sin²θ_W
 top quark couplings to γ, W and Z
- → At high energy and possibly for the first stage

More details on A_{FR}^{t} and A_{FR}^{b} → see talk by Pawel Sopicki


 V_{th} from $e^{-}\gamma \rightarrow \bar{t}bv_{a}$ at high energy: 200000 ey→tbv events expected at 3 TeV (no tt contribution in contrast to $e^+e^- \rightarrow tbev_a$ or $\gamma\gamma \rightarrow tbev_a$)

Precision EW as a tool for BSM

Triple and quartic gauge couplings using e⁺e⁻ → W⁺W⁻ (vv/e⁺e⁻): Important to choose parametrisation comparable to other studies/experiments!

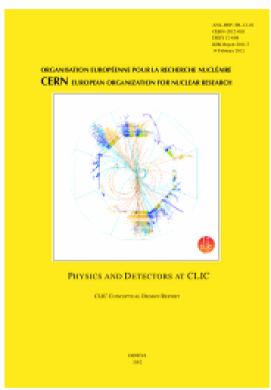
W boson mass determination at high energy:

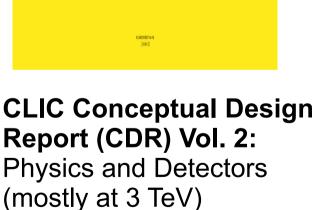
- Large samples of single W events produced at high-energy CLIC
- Potential for competitive measurement of $\rm M_{_{\rm W}}$ using $\rm W^{\scriptscriptstyle \pm} \rightarrow q\bar{q}$
- Need full simulation study to understand the impact of systematic effects

Summary and conclusions

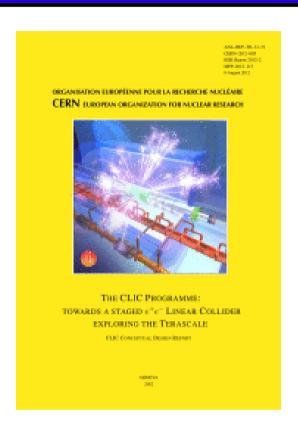
Summary and conclusions: SM

- The first stage of a CLIC collider at 350 GeV provides precise determinations of the absolute values of many Higgs boson couplings
- Subsequent high-energy running, here assumed at 1.4 and 3 TeV, improves the precision of many observables significantly and gives access to rare Higgs decays
- High-energy CLIC operation provides the potential to measure the trilinear Higgs self-coupling at the 10% level
- Combined fits to all measurements at 350 GeV, 350 GeV + 1.4 TeV and 350 GeV + 1.4 TeV + 3 TeV were performed to extract the Higgs couplings and width simultaneously
- A comprehensive paper on (SM-)Higgs physics at CLIC is being completed
- The top mass can be measured in a well-defined way using a threshold scan


Summary and conclusions: BSM


- CLIC operated at high-energy (1.4 and 3 TeV) provides significant discovery potential for BSM phenomena
- Measurement of the gaugino, slepton and heavy Higgs masses with O(1%) precision up to the kinematic limit (M ≈ 1.5 TeV)
- In addition to studying new particles directly: sensitivity to New Physics at large scales (tens of TeV) through precision measurements (examples: Z' and composite models)
- Many more studies started / will start soon: also on BSM sensitivity through precision top / SM observables

Backup slides

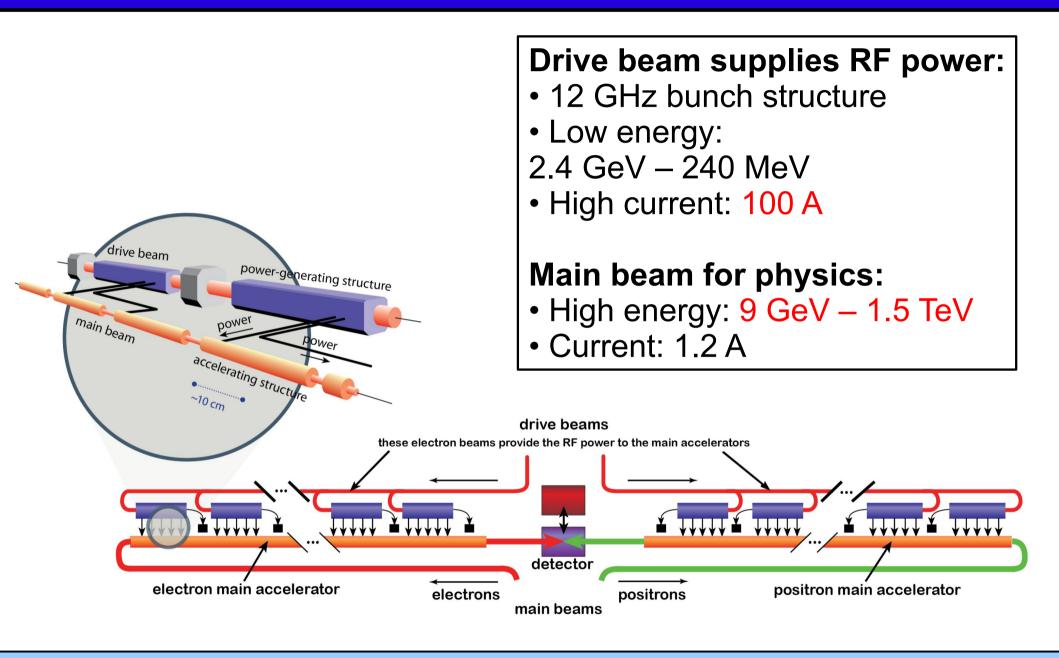

09/01/2015

If you want to know more...

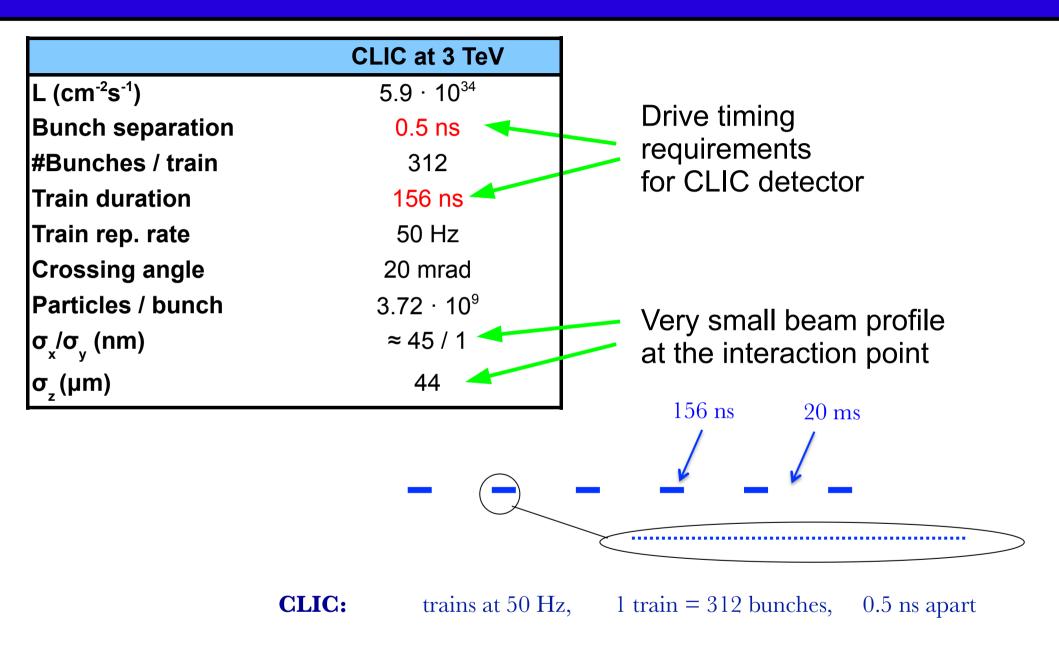
arXiv:1202.5940

CLIC CDR Vol. 3: Staged construction, SUSY at 1.4 TeV, Z'

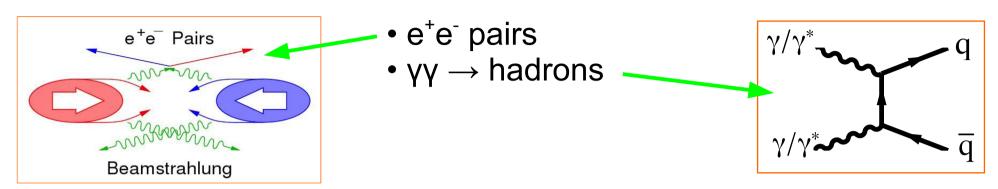
arXiv:1209.2543



Snowmass white paper: Most of the Higgs studies


arXiv:1307.5288

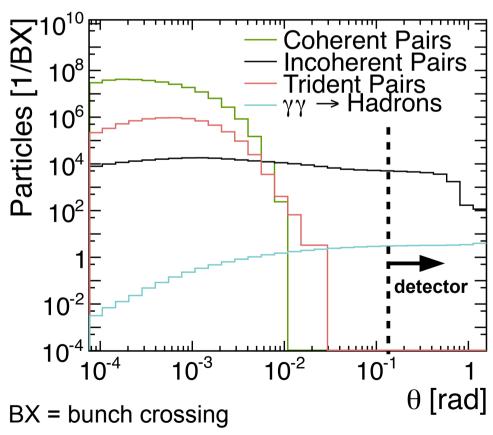
(last update: 01/10/2013)


2-beam acceleration scheme

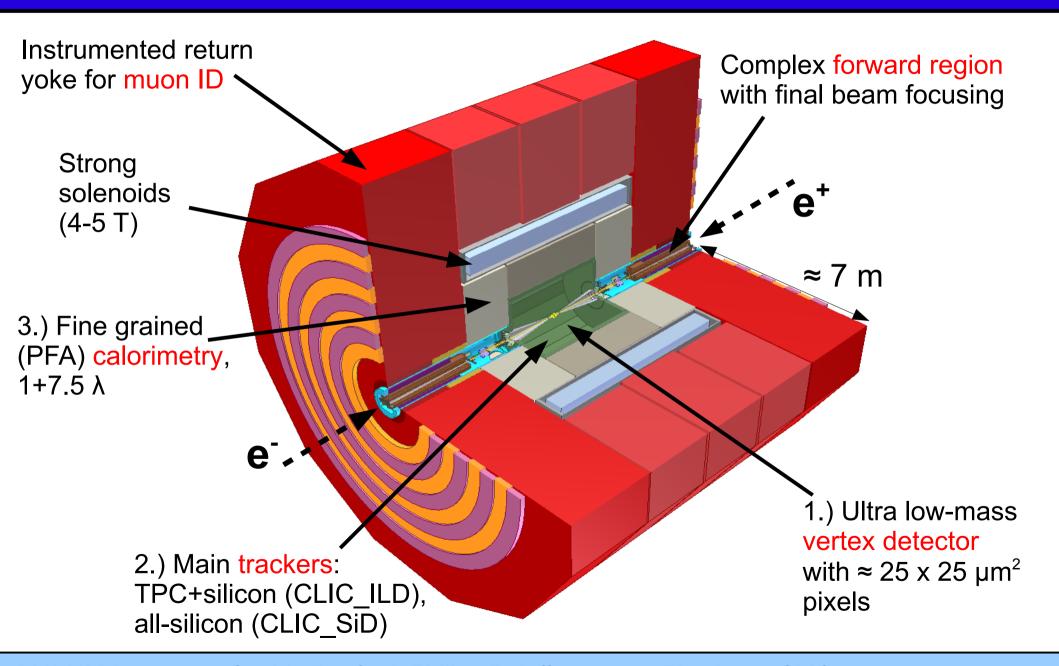
Selected CLIC parameters

Beam related backgrounds

Coherent e⁺e⁻ pairs:

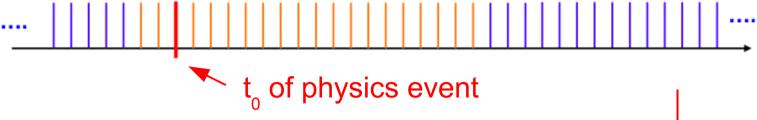

7 · 10⁸ per BX, very forward **Incoherent e**⁺**e**⁻ **pairs**:

3 · 10⁵ per BX, rather forward


→ Detector design issue (high occupancies)

yy → hadrons

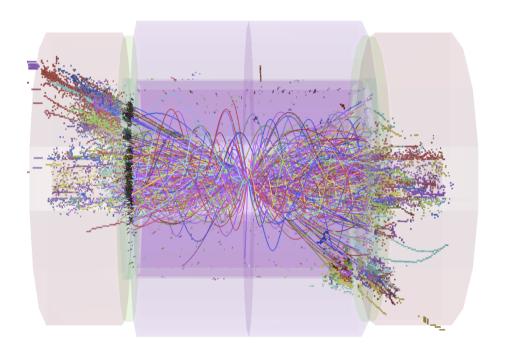
- "Only" 3.2 events per BX at 3 TeV
- Main background in calorimeters and trackers
- → Impact on physics



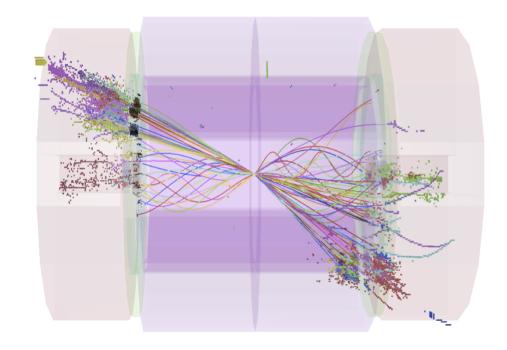
CLIC detector concepts

Background suppression

Triggerless readout of full bunch train:


- 1.) Identify t₀ of physics event in offline event filter
- tCluster

- Define reconstruction window around t₀
- All hits and tracks in this window are passed to the reconstruction
- \rightarrow Physics objects with precise p_T and cluster time information
- 2.) Apply cluster-based timing cuts
 - Cuts depend on particle-type, p_T and detector region
 - → Protects physics objects at high p₊


In addition: hadron-collider type jet algorithms (FastJet)

Impact of the timing cuts

e⁺e⁻ → tt at 3 TeV with background from γγ → hadrons overlaid

1.2 TeV background in the reconstruction window

100 GeV background after timing cuts

Physics studies are based on Geant4 simulations including pile-up from $\gamma\gamma \rightarrow$ hadrons