XX Cracow Epiphany Conference 8-10 January 2014

D-meson nuclear modification factor in Pb-Pb collisions with ALICE

Cristina Bedda, for the ALICE collaboration (INFN Sez. di Torino and Politecnico di Torino)

Outline

- Heavy quarks: physics motivations
- The ALICE detector
- Reconstruction of D mesons
- Nuclear modification factor
- Results from Pb-Pb collisions at $\sqrt{s}_{_{NN}}$ =2.76 TeV and p-Pb collisions at $\sqrt{s}_{_{NN}}$ =5.02 TeV
- Conclusions

Heavy quarks: physics motivations

- Heavy quarks are produced in hard scattering processes in the initial stages of the collision
- They give us different information in each type of collisions:
 - **pp**: test perturbative QCD
 - **p-Pb**: reference for initial state effects
 - Pb-Pb: initial and final state effects due to the interaction with the medium
- In heavy-ion collisions, they pass through

all the phases of the medium evolution losing energy via:

- gluon radiation
- elastic collisions in the medium
- · They are sensitive to the density of the medium
- Colour-charge and mass dependence of energy loss $\implies \Delta E_g > \Delta E_{u,d} > \Delta E_c > \Delta E_b$

Dokshitzer and Kharzeev, PLB 519 (2001)

The ALICE detector

Data set

- 2011 Pb-Pb run at $\sqrt{s_{NN}}$ =2.76 TeV with integrated luminosity of:
 - 20.9 µb⁻¹ in 0-10% centrality (central trigger)
 - 6.2 µb⁻¹ in 10-50% centrality (semi-central trigger)
- Centrality classes defined on the basis of the Geometrical Glauber model applied to the measured VZERO amplitude

 Prompt D mesons analysed in different centrality classes:

0-7.5% \longrightarrow study of R_{AA} vs p_T

study of R

• D mesons are reconstructed via their hadronic decay channels: $- D^0 \rightarrow K^- \pi^+$ BR=3.9% pointing angle θ $- D^+ \rightarrow K^- \pi^+ \pi^+$ BR=9.1% D'reconstructed momentur D flight line $- D^{*+} \rightarrow D^{0} (\rightarrow K^{-} \pi^{+}) \pi^{+}$ BR=2.6% rimary vertex secondary vertex impact parameters ~100 µ m

- Based on the identification of secondary vertices displaced by few hundreds µm
- Main selection criteria:
- p_T and impact parameter (d₀) of the single tracks
- PID (π , K, p) for background rejection at low p_T with TPC+TOF
- Pointing angle (the angle between the candidate momentum and the flight line)

D-meson reconstruction

- Distance primary-secondary vertices
- Signal extracted from fits to invariant mass distributions
- Correction for beauty feed-down to extract results for prompt D mesons based on FONL arXiv:1205.6344

6

200

- $D_s^+ \rightarrow \phi (\rightarrow K^+ K^-) \pi^+$ BR=2.3%

D mesons in the 0-7.5% centrality class

- Centrality class: 0-7.5%
- Minimum Bias + central
 trigger based on VZERO
- > p_⊥ ranges explored:
 - $D^0 \rightarrow$ [1,24] GeV/c
 - D⁺, D^{*+} → [3,36] GeV/c
 - D_s⁺ → [4,12] GeV/c

~16x10⁶ events analyzed from 2011 Pb-Pb data sample

Nuclear modification factor R_{AA} vs p_{T}

pp reference determined by scaling the cross section measured with ALICE at 7 TeV to 2.76 TeV using FONLL predictions arXiv:1107.3243, JHEP07(2012)191, arXiv:1205.4007

- D^0 , D^+ , $D^{*+} R_{AA}$ compatible within errors in the whole p_T range
- Large suppression by a factor of 4-5 in $5 < p_{T} < 15$ GeV/c for D⁰, D⁺, D^{*+}
- First measurement of D⁺_s R_{AA} in Pb-Pb collisions with 2011 Run → suppression by a factor of 3-5 in 8<p₁<12 GeV/c
- more statistics needed to conclude on the enhancement of low-p_T D_s⁺, expected in case of charm hadronization via coalescence (Kuznetsova & Rafelski, EPJ C51(2007)113; He et al., arXiv:1204.4442; Andronic et al., arXiv:0708.1488)

Nuclear modification factor R_{AA} vs p_{T}

- $R_{AA} = 1$ no nuclear effects $R_{AA} \neq 1$ initial and final nuclear effects
- D⁰, D⁺, D^{*+} R_{AA} compatible within errors in the whole p_T range
- Large suppression by a factor of 4-5 in $5 < p_{T} < 15$ GeV/c for D⁰, D⁺, D^{*+}
- First measurement of D⁺_s R_{AA} in Pb-Pb collisions with 2011 Run → suppression by a factor of 3-5 in 8<p₁<12 GeV/c
- more statistics needed to conclude on the enhancement of low-p_T D_s⁺, expected in case of charm hadronization via coalescence (Kuznetsova & Rafelski, EPJ C51(2007)113; He et al., arXiv:1204.4442; 9 Andronic et al., arXiv:0708.1488)

D mesons vs centrality

Cristina Bedda

- > 6 centrality classes:
- > 0-10%, 10-20%, 20-30%,
 30-40%, 40-50%, 50-80%

ALTCF

- 4 p_{τ} intervals studied:
 - 2-3, 3-5 GeV/c for D⁰ only (not shown)
 - 5-8, 8-16 GeV/c for D⁰, D⁺, D^{*+}

Nuclear modification factor R_{AA} vs centrality

Suppression of D⁰, D⁺, D^{*+} mesons increases with centrality in $5 < p_{\tau} < 8$ and $8 < p_{\tau} < 16$ GeV/c

Comparison to non-prompt J/Ψ from B mesons

- p_T ranges chosen to have similar kinematics for D and B mesons measured via non-prompt J/ψ by CMS (arxiv:1201.5069)
- Difference between charm and beauty suppression in central collisions shown both in 5<p_<8 and 8<p_<16 GeV/c
- Indication of $\mathbf{R}_{AA}^{B} > \mathbf{R}_{AA}^{D}$ as expected from the mass hierarchy in the energy loss models

Comparison to light hadrons

Similar suppression for D mesons and pions

 $\mathbf{R}_{_{\mathbf{A}\mathbf{A}}}^{^{\mathbf{D}}} \approx \mathbf{R}_{_{\mathbf{A}\mathbf{A}}}^{^{\pi}}$ for $\mathbf{p}_{_{\mathbf{T}}} > 3 \text{ GeV/c}$

R_{AA}^D> R_{AA}^π expected from mass hierarchy and colour-charge dependence of energy loss but... ¹³
 large systematic uncertainties to make a conclusion

Comparison to energy-loss models

14

ALI-DER-52935

Several theoretical models based on in-medium parton energy loss reproduce R_{AA} of prompt D mesons reasonably well

WHDG models in agreement with D meson R_{AA} and with non-prompt J/ ψ R_{AA} vs N part

BAMPS: Fochler et al., J. Phys. G38 (2011) 124152 BDMPS: Armesto et al. PRD71 (2005) 054027 POWLANG: Alberico et al., Eur.Phys.J C71 (2011) 1666 UrQMD: T. Lang et al, arXiv:1211.6912 [hep-ph];T. Lang et al., arXiv:1212.0696 [hep-ph]. TAMU: Rapp, He et al., Phys. Rev. C 86 (2012) 014903 WHDG: Horowitz et al., JPhys G38 (2011) 124114 Aichelin et al.: Phys. Rev. C79 (2009) 044906, J. Phys. G37(2010) 094019 Djordjevic et al.: arXiv:1307.4098 Vitev et al.: Phys. Rev. C80 (2009) 054902, Phys. Lett. B 713 (2012) 224

D-meson R_{pPb}

- p-Pb collisions → assess cold nuclear matter effects
 - Initial state effects (present also in Pb-Pb): nuclear modification of PDFs (shadowing/saturation at low x), k_r-broadening
- The measured D meson $\mathsf{R}_{_{p\mathsf{P}b}}$ is close to unity for $p_{_{\!\!\!\!-}}\!\!>\!\!3$ GeV/c
 - Small nuclear modification in p-Pb
 - Compatible with expectations from pQCD+EPS09 shadowing and from saturation with the Color Glass Condensate approach
- Confirms that the suppression observed in central Pb-Pb collisions at high p_{τ} is an effect of the hot and dense medium

Conclusions

D-meson R_{AA} vs p_{T} in central (0-7.5%) Pb-Pb collisions:

- strong suppression by a factor of 4-5 in 5<p_<16 GeV/c
- First measurement of $D_s^+ R_{AA}^-$: suppression by a factor of 3-5 in 8<p_<12 GeV/c

D-meson R_{AA} vs centrality Pb-Pb collisions:

- suppression increases with $\rm N_{_{part}}$ for 5-8, 8-16 GeV/c $\rm p_{_{T}}$ ranges
- observed difference in suppression of D mesons and non-prompt J/ ψ from B mesons decays measured by CMS at intermediate/high p_r in central collisions

For the D-meson R_{pPb} measurement in p-Pb collisions data are consistent with small initial-state effects, in particular with pQCD + shadowing

A suppression in the D meson production yield has been observed in central Pb-Pb collisions due to the presence of the hot and dense medium

More statistics is needed to reduce the uncertainties and provide further constraints to energy-loss models.

Backup slides

B feed-down subtraction

$$f_{prompt} = 1 - (N_{feed-down,raw}^{D^+}/N_{raw}^{D^+}) =$$

 $= 1 - \langle T_{AA} \rangle \cdot \left(\frac{d^2 \sigma}{dy dp_T} \right)_{feed-down}^{FONLL} \cdot R_{AA}^{feed-down} \cdot \frac{(Acc \times \varepsilon)_{feed-down} \cdot \Delta y \Delta p_T \cdot BR \cdot N_{evt}}{N_{raw}^{D+}/2}$

Assumptions on B suppression:

- analysis on R_{AA} vs p_T in 0-7.5% centrality class $R_{AA}^{feed-down} = R_{AA}^{Prompt D}$ and $R_{AA}^{feed-down}$ ranging from 0.3 to 3 x $R_{AA}^{Prompt D}$ - analysis on R_{AA} vs centrality: $R_{AA}^{feed-down} = 2 \times R_{AA}^{Prompt D}$ and $R_{AA}^{feed-down}$ ranging from 1 to 3 x $R_{AA}^{Prompt D}$

Systematic uncertainties from B energy loss ~6-10%

Acceptance x efficiences

-PERF-32809

Systematic uncertainties

pp reference

•Outline

•Heavy quarks: physics motivations

The ALICE detector

•Data set

•D-meson reconstruction

•D mesons in the 0-7.5% centrality class

•Nuclear modification factor RAA vs pT

•D mesons vs centrality

•Nuclear modification factor RAA vs centrality

•Comparison to non-prompt J/ Ψ from B mesons

•Comparison to light hadrons

•Comparison to energy-loss models

•D-meson RpPb

•Conclusions

•Backup slides

•B feed-down subtraction

•Acceptance x efficiences

•Systematic uncertainties

•pp reference