Search for Lepton Number Violation at LHCb

Update for Majorana Neutrino Search with Like-Sign Di-Muons: $B^- o \pi^+ \mu^- \mu^-$ decay

PRELIMINARY, presented for the first time

Bartlomiej Rachwał (IFJ PAN Kraków) on behalf of the LHCb Collaboration

The Cracow Epiphany Conference, 8-10 January 2014

Outline

- Lepton Flavor and Lepton Number Violation studies at LHCb
- Lepton Number Violation (LNV) vs. Majorana neutrinos searches
- \Box Searches for Majorana neutrinos at LHCb based on the decay $B^- \rightarrow \pi^+ \mu^- \mu^-$
 - Comparison of "previous" vs "updated" studies
 - The search strategies:
 - based on the neutrino lifetime,
 - based on a function of the neutrino mass,
 - Results: Upper limits
 - Results: Upper limit for coupling to $|V_{\mu4}|^2$

Conclusions.

Lepton Flavour and Lepton Number Violation studies at LHCb

1) Searches in tau lepton decays

- based on 1.0 $\,\rm fb^{-1}$ of data
- first results on the $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ decay mode from hadron collider
- results for $\tau^- \rightarrow \bar{p}\mu^+\mu^-$ and $\tau^- \rightarrow p\mu^-\mu^-$ Phys. Let represents the first direct experimental limits on this channel

2)
$$B^0_s
ightarrow e^\pm \mu^\mp$$
 and $B^0
ightarrow e^\pm \mu^\mp$

- based on 1.0 fb⁻¹ of data
- results are a factor of 20 lower thatnthose set by previous experiments
- 3) Searches in heavy baryon decays

underway...

- 4) Majorana neutrino search
 - \cdot Based on 0.41 $\,\rm fb^{-1}$ of data

$BR(\tau^- \to \mu^- \mu^+ \mu^-) < 8.0 \times 10^{-8}$	at 90% CL
$BR(\tau^- \to \bar{p}\mu^+\mu^-) < 3.3 \times 10^{-7}$	at 90% CL
$BR(\tau^- \to p\mu^-\mu^-) < 4.4 \times 10^{-7}$	at 90% CL

Phys. Lett. B724 (2013) 36-45

$$\begin{array}{l} BR(B^0_s \to e^{\pm} \mu^{\mp}) < 1.1(1.4) \ \times \ 10^{-8} \ \text{at 90\% (95\%) CL} \\ BR(B^0 \to e^{\pm} \mu^{\mp}) < 2.8(3.7) \ \times \ 10^{-9} \ \text{at 90\% (95\%) CL} \end{array}$$

Phys. Rev. Lett.111 (2013) 141801

$$\Lambda_b^0 \to h^+ \mu^- \ (h = K, D, D_s)$$

Mode	${\mathcal B}$ upper limit	Approximate limits as function of M_N	at 95% CL
$\overline{D^+\mu^-\mu^-} \ D^{*+}\mu^-\mu^-$	6.9×10^{-7} 2.4×10^{-6}		
$\pi^+\mu^-\mu^- onumber \ D_s^+\mu^-\mu^- onumber \ D^0\pi^+\mu^-\mu^-$	$1.3 imes 10^{-8}$ $5.8 imes 10^{-7}$ $1.5 imes 10^{-6}$	$(0.4 - 1.0) \times 10^{-8}$ $(1.5 - 8.0) \times 10^{-7}$ $(0.3 - 1.5) \times 10^{-6}$	

Phys.Rev. D85 (2012) 112004

Update for $B \rightarrow \pi^+ \mu^- \mu^-$ with 3.0 fb⁻¹ of data presented first time in this presentation...

LNV vs. Majorana neutrinos searches

- > Lepton number is conserved in the Standard Model but can be violated in a range of new physics models such as those with Majorana neutrinos.
- > Neutrino oscillation phenomenon have conclusively shown that neutrinos are massive, which is not part of the SM. This is the proof of the Lepton Number Violation, LNV)
- > The Majorana nature of neutrinos can be experimentally verified only via leptonnumber violating processes involving charged leptons in the final state.
- > The LHCb physics program encompasses the search for Majorana neutrinos in a broad class of exclusive B and D decays.

\triangleright	The process B^-	$\rightarrow \pi^+ \mu^- \mu$	ι^- is cons	sidered to be the most s	sensitive	in B	mes
	decays:	Mode	\mathcal{B} upper limit	Approx. limits as function of M_N	_		
		$D^+\mu^-\mu^-$	$6.9 imes 10^{-7}$		-		
		$D^{*+}\mu^-\mu^-$	$2.4 imes 10^{-6}$				
	[$\pi^+\mu^-\mu^-$	$1.3 imes 10^{-8}$	$(0.4 - 1.0) \times 10^{-8}$			
		$D_s^+\mu^-\mu^-$	$5.8 imes 10^{-7}$	$(1.5 - 8.0) imes 10^{-7}$			
		$D^0\pi^+\mu^-\mu^-$	$1.5 imes 10^{-6}$	$(0.3 - 1.5) \times 10^{-6}$			

son

Phys. Rev. D 85, 112004 (2012)

[1]. LHCb Collaboration, R.Aaij et al., Searches for Majorana neutrinos in B⁻ decays, Phys.Rev. D85 (2012) 112004 [2]. Atre et al. The search for heavy Majorana neutrinos, JHEP 05 (2009) 4

 $B^- o \pi^+ \mu^- \mu^-$

- > Similarity to neutrinoless double β decay, $2\beta_{0\nu}$
 - but $B^- \to \pi^+ \mu^- \mu^-$ probes LFV with muons while $2\beta_{0\nu}$ involves electrons,
- > Final states containing π^+ are mediated by an on-shell Majorana neutrino
 - b-quark decays can produce a **light neutrino that can mix with** a heavy neutrino:

Searches for Majorana neutrinos @ LHCb

Previous results: LHCb Collaboration, R. Aaij et al., Searches for Majorana neutrinos 112004

- > 0.41 fb⁻¹ of data collected at the center-of-mass energy of 7 TeV,
- Sensitive to N with short lifetimes of the order of 1 ps. (sensitivity quickly worsens for longer lifetimes),
- In the B⁻ signal region, no statistically significant signal at any mass has been found,
- → Upper limits: **BR**(**B**⁻→ $\pi^+\mu^-\mu^-$) < 1.3 × 10⁻⁸ at 95% C.L.

Update:

- ➤ 3 fb⁻¹ of data: collected at the center-of-mass energy: 1/3 of 7 TeV, 2/3 of 8 TeV
- ➢ N lifetimes are long enough, providing that the natural decay width is narrower than the mass resolution (~ 0 and 20 MeV depending on the mass),
- → Upper limits on BR(B⁻→N($\pi^+\mu^-$) μ^-) for N with lifetimes up to 1000 ps,
- > Upper limit on the coupling of a single 4^{th} generation Majorana neutrino to μ .

 $B^-
ightarrow \pi^+ \mu^- \mu^-$ >> The search strategy

Dependency on the neutrino lifetime, τ_N :

- ➤ Two selections for the signal $B^- \to N(\pi^+\mu^-)\mu^-$:
 - Short τ_N (called "S") zero lifetime *N*, a common B vertex is formed from $\pi^+\mu^-\mu^-$ (similar to previous analysis);
 - ► Longer τ_N up to 1000 ps (called "L") N with nonzero lifetime, two vertices reconstructed (new); For lifetimes ≥ 1 ps, the $\pi^+\mu^-$ from B meson decay can appear as significantly detached from the B⁻ decay vertex.

Dependency on the neutrino mass, m_N **:**

- > The detection efficiency varies as a function of m_N .
- For both S and L selections $\pi^+\mu^-\mu^-$ mass is in the B^- signal window $(\pm 2\sigma \text{ of the } B^- \text{ mass}, \sigma \text{ the mass resolution}).$

The normalization:

• $B^- \rightarrow J/\Psi (\mu^+ \mu^-) K^-$ used to normalize the branching fractions of the decays to heavy neutrinos:

 $BR(B^- \to J/\psi \; K^-, \; J/\psi \to \mu^+ \; \mu^-) = (6.037 \pm 0.256) \times 10^{-5}$

282774 ± 274 signal events, in m(B⁻) [5100, 5500] MeV with a B mass resolution of (17.9 ± 0.4) MeV.

Upper limit calculations:

- CLs method used to set upper limits,
- The expected background yields and the total number of events determined within the signal **B mass range,** ± 2 times the invariant mass resolution, [**5238.6**, **5319.8**] **MeV**:
 - Total number of events: **19** *S* **events, 60** *L* **events**,
 - Background fit yields: $17.8 \pm 3.2 S$ events, $54.5 \pm 5.4 L$ events (in the same region).

Short neutrino lifetimes of 1 ps or less:

BR $(B^- \rightarrow \pi^+ \mu^- \mu^-) < 4.0 \times 10^{-9}$ at 95% C.L.

- ✓ Average detection efficiency
- ✓ Total systematic uncertainty: 6.6%.

Scanning across the m_N spectrum:

- ✓ 5 MeV step,
- \checkmark ± 3 σ search window at each step,
- σ neutrino mass resolution

Results: Two dimensional upper limits

For the L sample **the detection efficiency** changes with τ_N . Hence for *L* candidates, upper limits has been set as a function of both m_N and lifetime:

- ➢ Neutrino mass step size of 5 MeV,
- Lifetime step size of 100 ps,

Model dependent upper limits for the $|V_{\mu4}|^2$, for each value of m_N extracted using the formula from Atre et al. [1]

- \blacktriangleright Limits on branching fraction can be converted to limits on the $|V_{\mu4}|^2$,
- > 95% C.L. limit on $|V_{\mu4}|$ as a function of m_N .

^{[1].} Atre et al. The search for heavy Majorana neutrinos, JHEP 05 (2009)

Conclusions

On-shell Majorana neutrinos coupling to muons in the $B^- \rightarrow \pi^+ \mu^- \mu^-$ decay channel as a function of m_N between 250 – 5000 MeV and for lifetimes up to ≈ 1 ns have been searched.

No signal found, upper limits on the $B^- \rightarrow \pi^+ \mu^- \mu^-$ branching fraction and the coupling $|V_{\mu4}|^2$ as a function of the neutrino mass have been set.

These results supersede previous LHCb results, furthermore computed limits are the most restrictive to date.

Backup

LHCb detector

$B^- ightarrow \pi^+ \mu^- \mu^-$ >> The search strategy

Requirements for candidates:

 $\mu: p > 3 \text{ GeV}, p_T > 0.75 \text{ GeV}$ $h: p > 2 \text{ GeV}, p_T > 1.1 \text{ GeV}$ $\mu^- \pi^+: p_T \ge 700 \text{ MeV}.$

The normalization:

• The well measured decay channel $B^- \rightarrow J/\Psi (\mu^+ \mu^-) K^-$ is used to normalize the branching fractions of the decays to heavy neutrinos:

 $B(B^- \rightarrow J/\psi \ K^-, \ J/\psi \rightarrow \mu^+ \ \mu^-) = (6.037 \pm 0.256) \times 10^{-5}$

Upper limit calculations:

- CLs method has been used to set upper limits.
- The expected background yields and the total number of events has been determined within the signal B mass range (5238.6 5319.8 MeV):
 - Total number of events: **19** *S* **events** and **60** *L* **events**,
 - Background fit yields:
 - S: 17.8 ± 3.2 events
 - L: 54.5 ± 5.4 events (in the same region).

 $B^- o \pi^+ \mu^- \mu^-$

>> The $\pi^+\mu^-$ mass spectra for both S and L selections within searches for signals as a function of m_N

- ✓ Masses of $\pi^+\mu^+\mu^-$ candidates restricted to ± 2 σ of B− mass for the (a) S and (b) L selections,
- \checkmark The shaded regions indicate the estimated peaking backgrounds.
- \checkmark Backgrounds that peak under the signal in (b) and (c) are (green) shaded.
- ✓ The dotted lines show the combinatorial backgrounds only. The solid line the sum of both backgrounds.

>> An upper limit on the branching fraction for the *S* sample

- □ the average detection efficiency, as determined by simulation, with respect to the normalization mode of 0.687 ± 0.01 .
- □ Included in computations of the limit:
 - the uncertainties on the background yields obtained from the fit to $m(\pi^+\mu^-\mu^-)$ distribution,
 - the 6.6% systematic uncertainty:
 - $B (B^- \rightarrow J/\psi K^-) (4.2\%)$
 - modeling of the efficiency ratio (3.5%) and backgrounds (3.5%),
 - relative particle identification efficiencies (0.5%),
 - tracking efficiency differences for kaons versus pions (0.5%),
 - yield of the normalization channel (0.4%).

Note: it is possible for virtual Majorana neutrinos of any mass to contribute to this decay via a process where the b quark transforms to a virtual W⁻ and a u quark while the u quark transforms to a virtual W⁺ and a d quark, the ud form a π^+ , and the Majorana communicates between the W 's causing emission of two μ^- leptons.

Two dimensional upper limits >> The strategy

For the L sample **the detection efficiency** changes with τ_N hence for L candidates, upper limits has been set as a function of both m_N and lifetime:

- ➤ the same scan in mass as before, but applying efficiencies appropriate for individual lifetime values starting at 1 ps up to 1000 ps.
- The number of background events is extracted from the sum of combinatorial and peaking backgrounds in the fit to the $m(\pi^+\mu^-)$ distribution in the same manner as for the S sample.
- ➤ The estimated signal yield is the difference between the total number of events computed by counting the number in the interval and the fitted background yield.
- > The τ_N dependence has been taken into account by using different efficiencies for each lifetime step.

$|V_{\mu4}|^2 >>$ The strategy

Model dependent **upper limits for the** $|V_{\mu4}|^2$, **for each value of m**_N are extracted using the formula from Atre et al. *The search for heavy Majorana neutrinos*, **JHEP 05** (2009), where the total neutrino decay width is a function of m_N and proportional to $|V_{\mu4}|^2$:

- 1) The total neutrino decay width, Γ N , is a function of m N and proportional to $|V_{\mu4}|^2$,
- 2) Model for the total width for Majorana neutrino decay:

$$\Gamma_N = \left[3.95 \cdot m_N^3 + 2.00 \cdot m_N^5 (1.44m_N^3 + 1.14)\right] 10^{-13} |V_{\mu 4}|^2$$

- 3) To obtain upper limits on $|V_{\mu4}|^2$ for each value of m_N we assume a value for $|V_{\mu4}|$, and calculate Γ_N . This allows us to determine the τ_N dependent detection efficiency.
- 4) To find the branching fraction:

$$\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) = \frac{G_F^4 f_B^2 f_\pi^2 m_B^5}{128\pi^2 \hbar} |V_{ub} V_{ud}|^2 \tau_B \left(1 - \frac{m_N^2}{m_B^2}\right) \frac{m_N}{\Gamma_N} |V_{\mu 4}|^4$$

5) The value of |V_{µ4}| is then iterated to match the previously determined upper limit value,
6) Limits have been derived for other experiments by Atre et al. using different assumptions about Γ_N and thus cannot be directly compared.