

1

Charged particle multiplicity in p+Pb collisions in the ATLAS experiment

B.Żabiński for the ATLAS Collaboration IFJ PAN, Kraków

OUTLINE:

- > The ATLAS detector
- Centrality estimation
- Methods
- Corrections
- > Systematic uncertainties
- Results
- Summary

The ATLAS detector

JINST 3 (2008) S08003

Epiphany Conference 2014

Centrality determination

p+Pb data from 2012 run are used ($L_{int} \sim 1 \mu b^{-1}$)

Number of events used in analysis ~ 2.1 M corresponds to 98 ± 2 % inelastic events

- Eight centrality intervals 0-1%, 1-5%, 5-10 %, 10-20 %, 20-30 %, 30-40 %, 40-60 %, 60-90 % were used in this analysis
- The most peripheral events (90-100%) excluded due to large systematic uncertainties on the event acceptance efficiency and the event composition

Methods in $dN_{ch}/d\eta$ measurement

Three methods in this analysis were used. Two different versions of tracklets method and pixel tracks method.

Tracklet – two hits in different layers of pixel detector, compatible with reconstructed vertex.

One hit in B-Layer, hits from second pixel layer in the search region are merged to form a single tracklet. This reduces the number of fake tracklets. All combinations of pixel hits are allowed. No reduction of the number of fake tracklets.

Pixel tracks method – uses results of the standard track reconstruction algorithm, but restricted to the pixel detector, which provides a measurement of transverse momentum. This method was used as a cross-check.

Corrections:

$$C(O, z_{vtx}, \eta) \equiv \frac{(N_{pr}(O, z_{vtx}, \eta))}{(N_{rec}(O, z_{vtx}, \eta))}$$

 N_{pr} – number of charged particles at generator level N_{rec} – number of reconstructed tracks or tracklets

 ΔN^{raw} – number of reconstructed tracks or tracklets N_{evt} – total number of analyzed events

Correction calculated in 8 intervals of detector occupancy and 7 intervals of z_{vtx} (50 mm width) Correction includes several effects:

- Inactive area in detector and reconstruction efficiency
- Contribution of residual fakes and secondary particles
- Losses due to tracks or tracklets selection cuts including those for particles with p_{τ} < 100 MeV
- B. Żabiński

Systematic uncertainties:

Three main sources of systematic uncertainties:

- Detector description in simulations
- Sensitivity on selection criteria
- Difference between properties of generated particles used in the MC and the known properties of Data

Source	60 – 9 Barrel	00 % endcap	0 – Barrel	1 % endcap	
MC detector description	1.7 %		1.7 %		
Extra material	1 %	2%	1 %	2 %	
Tracklet selection	0.5 %	1.5 %	0.5 %	1.5 %	96
p_{t} re-weighting	0.5 %	0.5 %	0.5 %	3.0 %	13-0
Extrapolation to $p_t = 0$	1 %	2.5 %	1 %	2 %	NF-20
Particle composition	1 %		1 %		S-C
Analysis method	1.5 %	2.0 %	1.5 %	2.5 %	ATLA
Event Selection	5.0 %	6.0 %	0.5 %	0.5 %	

$dN_{ch}/d\eta$:

measured in the pseudorapidity interval $|\eta| < 2.7$

- 1) Charged particle density increases with centrality
- 2) Asymmetric distribution more particles are produced in Pb-going side
- dN/dη for peripheral p+Pb events (centrality 60-90 %) is similar to dN/dη in p+p collisions [New J.Phys. 13 (2011) 053033]

 $(dN_{ch}/d\eta) / (dN_{ch}/d\eta)|_{(60-90\%)}$:

Centrality Ratio	а	b	С
0 – 1 % / 60 – 90 %	-0.33 ± 0.006	0.77 ± 0.05	6.78 ± 0.28
1 – 5 % / 60 – 90 %	-0.030 ± 0.005	0.515 ± 0.031	5.35 ± 0.22
5 – 10 % / 60 – 90 %	-0.0218 ± 0.0035	0.377 ± 0.021	4.49 ± 0.18
10 – 20 % / 60 – 90 %	-0.0169 ± 0.0025	0.269 ± 0.014	3.77 ± 0.14
20 – 30 % / 60 – 90 %	-0.0113 ± 0.0020	0.182 ± 0.010	3.11 ± 0.11
30 – 40 % / 60 – 90 %	-0.0076 ± 0.0016	0.122 ± 0.006	2.61 ± 0.08
40 – 60 % / 60 – 90 %	-0.0037 ± 0.0011	0.0595 ± 0.0031	1.95 ± 0.06

Parameters of the function $(a\eta^2+b\eta+c)$ fitted to the ratio of dN/d η .

ATLAS-CONF-2013-096

dN/dη distribution in different centrality classes divided by dN/dη for peripheral collisions (centrality 60-90%). Red lines present 2nd order polynomial fitted to data points.

- 1.) Double-peak structure disappears after division by dN/dŋ for 60-90 % centrality
- 2.) The ratios increase nearly linearly with pseudorapidity and the slopes increase with centrality
- 3.) For very central collisions the ratio increases almost by a factor 2 in the measured η range.

Three different Glauber model implementations were used to obtain N_{part}

 For standard Glauber [Ann. Rev. Nucl. Part. Sci 57 (2007) 205-234]: dN/dη increases starting from N_{part} ≈ 10.

2) In Glauber-Gribov [Phys. Lett. B 633 (2006) 245-252] implementation with $\Omega = 0.55$: dN/d η is relatively flat.

3) For Glauber-Gribov implementation with Ω = 1.01: dN/dη decreases.

 $dN/d\eta/(\langle N_{part} \rangle/2)$ as a function of $\langle N_{part} \rangle$ for three implementation of Glauber model and five η -regions. Open boxes represent systematic uncertainty of $dN/d\eta$ only. Shaded boxes show the total uncertainty including systematic $\langle N_{part} \rangle$ errors.

Summary:

- Charged particle density for p+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV was measured in η range from -2.7 to 2.7 and for 8 centrality classes
- The shape of dN/dη changes with centrality. It is nearly symmetric in peripheral collisions and highly asymmetric in central collisions.
- $dN/d\eta$ for peripheral p+Pb events is similar to $dN/d\eta$ in p+p collisions
- Ratio of (dN_{ch}/dη) for central collisions to (dN_{ch}/dη)|_(60-90%) for peripheral one is approximately linear in η. Slope of the ratio strongly depends on centrality
- The $dN_{ch}/d\eta/(\langle N_{part} \rangle/2)$ dependence on $N_{part} \rightarrow \text{ sensitive to the Glauber modeling, especially in the most central collisions.}$

Thank you

Event Selection:

- \sim p+Pb data from 2012 run are used (L_{int}~1µb⁻¹)
- At least one hit in each side of the MBTS (i.e for $2.1 < |\eta| < 3.9$)
- · Time difference between two sides of MBTS less than 10 ns
- Reconstructed vertex $|z_{vtx}| < 175$ mm, at least two tracks with $p_T > 100$ MeV
- Pileup reduced by rejection of events with two vertices separated in z by more than 15 mm
- Rejection of electromagnetic and diffractive events required pseudorapidity gap $\Delta \eta^{Pb}_{gap} < 2.0$

Number of events used in analysis ~ 2.1 M corresponds to 98 ± 2 % inelastic events

Comparision of Data and MC in $\Delta \phi$ nad $\Delta \eta$

"flipped" method

$$(x-x_{vtx}, y-y_{vtx}) \rightarrow (-(x-x_{vtx}), -(y-y_{vtx}))$$

$$N_{2p}(\eta) = N_{2p}^{ev}(\eta) - N_{2p}^{fl}(\eta)$$

 $N_{2p}^{ev}(\eta)$ – yield of tracklet using method 2

 N_{2p}^{fl} - yield obtained from by flipping the clusters in the 2nd layer.

Comparison of Data and MC:

- Method 2 has largest contribution of fakes. For centrality 0-10% contribution of fakes reach 16% at large eta.
- Acceptance effects and fake fraction are well reproduced by Monte Carlo simulation – good agreement in the results

 $<N_{part}>$ as function of centrality intervals. Values of N_{part} has been obtained by fitted to the measured ΣE^{Pb}_{T} distribution Glauber's models.

Correlation between ΣE_T on proton-going side (-3.2 > η > - 4.9) and ΣE_T lead-going side (3.2 < η < 4.9).

 ΣE_T^{Pb} saturates rapidly with increasing $\Sigma E_T^{Pb} \rightarrow \Sigma E_T^{Pb}$ is more sensitive to nuclear geometry and was used to estimate centrality intervals

Comparison of results from ATLAS and ALICE experiment

ATLAS.