

Search for associated production of the Higgs boson in the H → WW channel with a fully leptonic final state with the ATLAS detector

UNIVERSITÀ DEGLI STUDI ROMA TRE

XX Cracow EPIPHANY Conference on the Physics at the LHC (8-10 January 2014)

Overview

- The Standard Model Higgs boson
 - Production Cross Section (at LHC)
 - Higgs Branching Ratio
- The WH associated production
 - WH(WW) → IvIvIv analysis
- The ZH associated production
 - ZH(WW) → IIIvIv analysis
- Combination with other H(WW) production mechanisms

Introduction

Why the associated production?

After the discovery of the Higgs boson particle by the ATLAS and CMS experiments (4th July 2012) it became interesting to study its coupling to other SM particles to test the validity of the SM

Why this analysis?

Particularly sensitive to the H-W couplings when considering the WH and sensitive to H-W and H-Z coupling when considering the ZH channel

The Standard Model Higgs boson

arXiv:1307.1347						
Branching Ratio (BR) at m _н = 125 GeV						
$H \rightarrow b\overline{b}$	$H \rightarrow WW^{(\star)}$	$H \rightarrow \tau \tau$	$H \rightarrow ZZ^{(*)}$	$H \rightarrow \gamma \gamma$		
0.577	0.215	0.0632	0.0264	0.00228		

The Analyses

- 3 lepton analysis
 - Aiming at WH(WW) \rightarrow lvlvlv
- 4 lepton analysis

- Aiming at $ZH(WW) \rightarrow IIIvIv$

The analysis presented by the ATLAS collaboration (ATLAS-CONF-2013-075) is focused on the WH associated production with a Standard Model Higgs boson decay in WW and a fully leptonic final state.

- Only 3 leptons
- Sum Charges |Q| = 1
- Low hadronic activity (jets)
- No B-tagged jet
- Presence of real missing energy

Due to the spin 0 nature of the SM Higgs Boson there is an additional signature typical of the H \rightarrow WW events:

Small opening angle between the leptons coming from the Higgs boson decay (defined as lep_ and lep_)

The main sources of background for this analysis are all the processes with 3 leptons and missing energy in the final state

VV

W(Z/y): a Same Flavor Opposite Sign lepton pair is always present*

→ analysis divided in two samples:

- with SFOS (¾ of the signal, all the W(Z/y*))
- without SFOS (¼ of the signal, W(Z/y*) suppressed)

ZZ*, WW*: entering in presence of lepton inefficiencies or fake leptons

Fake leptons

mainly tt, Wt and Z+jets

- → present in both categories
- → reducible through lepton isolation

VVV

mainly WWW

- → irreducible background
- \rightarrow cross-section comparable to the signal

Analysis selections

- Low hadronic activity
- Real Missing energy
- Dilepton invariant mass

	Signal Selections ATLAS-CONF-2013-075						
Cut	Z-enriched		Z-enriched		Z-enriched		Z-depleted
Jet multiplicity	SFOS	w/o SFOS					
<i>b</i> -veto	$N_{b-\mathrm{tag}}=0$						
$E_{\rm T,rel}^{\rm miss}$ cut	$E_{\rm T,rel}^{\rm miss} > 40 {\rm GeV}$		$E_{\rm T,rel}^{\rm miss} > 25 {\rm GeV}$				
Dilepton mass cuts	$ m_{\ell\ell} - m_Z > 25 \text{ G}$	$m_{\ell\ell} > 12 \text{ GeV}$					
Angular cut	$\Delta R_{\ell_0\ell_1} < 2.0$						
Overlap removal	remove ov	verlap with $H \to WW$ as	nalysis [6]				

- Opening angle (between the leptons coming from the Higgs)
- Overlap with other production mechanism involving the $H \rightarrow WW$ decay

Four control regions are defined to normalize the background estimates from MC to the data

Control Region		Selections ATLAS-CONF-2013-075
$W(Z/\gamma^*)$ CR	at most one jet with $p_{\rm T} > 25$ GeV;	$E_{\rm T,rel}^{\rm miss} > 25 ~{ m GeV}$
		at least one SFOS lepton pair with $ m_{\ell\ell} - m_Z < 25 \text{ GeV}$
ZZ ^(*) CR	no <i>b</i> -tagged jets with $p_{\rm T} > 25$ GeV;	$E_{\rm T,rel}^{\rm miss} < 40 ~{ m GeV}$
		$ m_{\ell\ell\ell} - m_Z < 15 \text{ GeV}$
Z+jets CR	$m_{\ell\ell,\min} > 12 \text{ GeV}; \Delta R_{\ell_0\ell_1} < 2.0$	$E_{\rm T,rel}^{\rm miss} < 40 ~{ m GeV}$
		at least one SFOS lepton pair with $ m_{\ell\ell} - m_Z < 25 \text{ GeV}$
Top CR	at least one <i>b</i> -tagged jet with $p_{\rm T} > 25$ GeV	$E_{\rm T,rel}^{\rm miss} > 40 { m GeV}$
	$m_{\ell\ell,\min} > 12 \text{ GeV}; \Delta R_{\ell_0\ell_1} < 2.0$	all SFOS lepton pairs with $ m_{\ell\ell} - m_Z > 25 \text{ GeV}$

Normalization factor values computed in the 2012 analysis

XX Cracow EPIPHANY (8-10 January)

Valerio Bortolotto

3-lepton analysis result (2012 + 2011)

ATLAS-CONF-2013-075

2012	VVV	VV	Fakes	VH(WW)	Data
2SFOS	0.63 ± 0.06	8.7 ± 0.5	4 ± 4	0.42 ± 0.03	8
1SFOS	1.56 ± 0.11	10.1 ± 0.6	0.5 ± 0.2	1.04 ± 0.04	16
0SFOS	1.45 ± 0.09	0.68 ± 0.12	0.58 ± 0.35	0.88 ± 0.04	9

2011	WZ	WW	ZZ	Тор	VH(WW)	Data
SFOS	3.2 ± 0.8	0.09 ± 0.06	0.17 ± 0.07	0.28 ± 0.12	0.39 ± 0.06	3
0SFOS	0.21 ± 0.07	0.00 ± 0.05	0.03 ± 0.03	0.01 ± 0.10	0.22 ± 0.04	0

The analysis presented by the ATLAS collaboration (ATLAS-CONF-2013-075) is focused on the ZH associated production with a Standard Model Higgs boson decay in WW and a totally leptonic final state.

Analysis selections

- Real Missing energy
- Leptons p_{τ}
- Low hadronic activity
- Dilepton invariant mass
- Angular selection

	Signal Selections A	TLAS-CONF-2013-075				
Cut						
$E_{\rm T}^{\rm miss}$ cut	$E_{\rm T}^{\rm miss}$ >	30 GeV				
$p_{\rm T}^{\ell}$ cuts	highest $p_{\rm T}$ lepton: $p_{\rm T} > 25 \text{ GeV}$					
	second highest $p_{\rm T}$ lepton: $p_{\rm T} > 20 \text{ GeV}$					
	third highest $p_{\rm T}$ lepton: $p_{\rm T} > 15 \text{ GeV}$					
	fourth highest $p_{\rm T}$ lepton: $p_{\rm T} > 10 {\rm ~GeV}$					
Jet multiplicity	$N_{\rm jet} \le 1$					
<i>b</i> -veto	N _{b-ta}	$_{g}=0$				
Mass cuts	$ m_{\ell_2\ell_3} - m_Z $	< 10 GeV				
	$10 \text{ GeV} < m_\ell$	$f_{0\ell_1} < 65 \text{ GeV}$				
Angular cut	$\Delta \phi_{01}^{\text{boost}}$	^t < 2.5				
Channel separation	2SFOS	1SFOS				
$p_{\mathrm{T4}\ell}$ cut	$p_{\mathrm{T4}\ell} > 30 \mathrm{~GeV}$					
$m_{4\ell}$ cut	$m_{4\ell} > 130 \text{ GeV}$					
Overlap removal [6]	remove overlap with	$H \rightarrow WW$ analysis				

• Overlap with other production mechanism involving the $H \rightarrow WW$ decay

One control region to normalize the main MC background sample (ZZ^(*)) to the data The resulting normalization factor is

ZZ 0.908 +0.095 -0.088

	Selection
	2 SFOS pairs of isolated leptons
	highest $p_{\rm T}$ lepton: $p_{\rm T} > 25$ GeV
	second highest $p_{\rm T}$ lepton: $p_{\rm T} > 20 \text{ GeV}$
	third highest $p_{\rm T}$ lepton: $p_{\rm T} > 15 \text{ GeV}$
	fourth highest $p_{\rm T}$ lepton: $p_{\rm T} > 10 \text{ GeV}$
ZZ CR	at most one jet with $p_{T,jet} > 25 \text{ GeV}$
	no <i>b</i> -tagged jets with $p_{\rm T} > 25$ GeV
	$ m_{\ell_2 \ell_3} - m_Z < 10 \text{ GeV}$
	$m_{\ell_0 \ell_1} > 65 \text{ GeV}$
	overlap removal with dilepton analysis

4-lepton analysis result (2012)

2012	ZZ	VVV	Fakes	VH(WW)	Data
2SFOS	0.70 ± 0.07	0.10 ± 0.01	0.04 ± 0.02	0.17 ± 0.01	0
1SFOS	0.23 ± 0.07	0.08 ± 0.01	0.00 ± 0.01	0.18 ± 0.01	2

VH(WW) result

Combining the 3 lepton and 4 lepton analyses

Conclusion

Main goal of Higgs analyses: study the properties of the new boson

Associate production: helps in disentangling the Higgs to bosons couplings from the Higgs to fermions

The results presented today:

- sets an upper limit on the VH couplings in agreement with SM expectations
- contributes to the overall significance of the Higgs boson observation in the WW decay channel

$p_{_0}$ at $m_{_H}$ = 125 GeV (σ)	VH	ggf+vbf	Combined
Expected	0.7	3.7	3.8
Observed	2.0	3.8	4.0

For the future (Run II): with higher statistics ATLAS will become sensitive to the VH production and a direct and precise measurement of the VH couplings will be achievable with this production mechanism

Thanks for the attention

BACK UP

3 lepton analysis (2012)

	VVV	VV	Fakes	Total Bkg.	VH(125)	Data
3 leptons	19.5±0.5	2410 ± 50	930±100	3370±150	18.53±0.25	3717
<i>Z</i> -enriched (eee + $\mu\mu\mu$)	5.89±0.18	1228±23	$380{\pm}40$	1620 ± 50	7.31±0.17	1711
Jet multiplicity and b-veto	4.79±0.19	1064 ± 24	273±33	1350 ± 50	4.85±0.13	1321
$E_{\rm T,rel}^{\rm miss}$ cut	2.51±0.13	241±6	12±7	256±12	1.72 ± 0.07	252
Dilepton mass cuts	0.86 ± 0.07	12.2 ± 0.6	5±5	18±5	0.48 ± 0.03	12
Angular cut	0.64 ± 0.06	9.0±0.5	4 ± 4	14 ± 4	0.45 ± 0.03	9
Overlap removal	0.63 ± 0.06	8.7±0.5	4 ± 4	14 ± 4	0.42 ± 0.03	8
<i>Z</i> -enriched ($ee\mu + \mu\mu e$)	9.54±0.29	1180±29	530±90	1730±120	9.25±0.18	1968
Jet multiplicity and b-veto	7.97±0.29	1008 ± 29	420 ± 90	1440 ± 120	6.56 ± 0.14	1490
$E_{\rm T,rel}^{\rm miss}$ cut	4.24±0.19	219±7	12±6	235±12	2.37 ± 0.08	247
Dilepton mass cuts	2.35±0.13	15.6 ± 0.8	2.3 ± 1.8	20.3 ± 2.3	1.17 ± 0.05	24
Angular cut	1.67 ± 0.11	10.8 ± 0.6	0.65 ± 0.22	13.2 ± 0.8	1.11 ± 0.04	16
Overlap removal	1.56 ± 0.11	10.1 ± 0.6	$0.50 {\pm} 0.20$	12.2 ± 0.7	1.04 ± 0.04	16
Z-de pleted	4.10±0.16	6.0 ± 0.4	20±4	30±4	1.98 ± 0.06	38
Jet multiplicity and b-veto	3.61±0.16	4.79 ± 0.33	7±4	15 ± 4	1.66 ± 0.05	16
$E_{\rm T,rel}^{\rm miss}$ cut	2.42±0.12	1.82 ± 0.20	0.8 ± 0.4	5.0 ± 0.6	1.05 ± 0.04	12
Dilepton mass cut	2.40±0.12	1.81 ± 0.20	0.8 ± 0.4	5.0 ± 0.6	1.01 ± 0.04	12
Angular cut	1.54 ± 0.09	0.86 ± 0.14	0.8 ± 0.4	3.2 ± 0.5	0.92 ± 0.04	10
Overlap removal	1.45 ± 0.09	0.68 ± 0.12	0.58 ± 0.35	$2.7{\pm}0.5$	0.88 ± 0.04	9

3-lepton analysis (2012)

3 lepton analysis (2012)

Control Region		Selections
$W(Z/\gamma^*)$ CR	at most one jet with $p_{\rm T} > 25$ GeV;	$E_{\rm T,rel}^{\rm miss} > 25 ~{ m GeV}$
		at least one SFOS lepton pair with $ m_{\ell\ell} - m_Z < 25 \text{ GeV}$
ZZ ^(*) CR	no <i>b</i> -tagged jets with $p_{\rm T} > 25$ GeV;	$E_{\rm T,rel}^{\rm miss} < 40 { m GeV}$
		$ m_{\ell\ell\ell} - m_Z < 15 \text{ GeV}$
Z+jets CR	$m_{\ell\ell,\min} > 12 \text{ GeV}; \Delta R_{\ell_0\ell_1} < 2.0$	$E_{\rm T,rel}^{\rm miss} < 40 { m GeV}$
		at least one SFOS lepton pair with $ m_{\ell\ell} - m_Z < 25 \text{ GeV}$
Top CR	at least one <i>b</i> -tagged jet with $p_{\rm T} > 25$ GeV	$E_{\rm T,rel}^{\rm miss} > 40 {\rm GeV}$
	$m_{\ell\ell,\min} > 12 \text{ GeV}; \Delta R_{\ell_0\ell_1} < 2.0$	all SFOS lepton pairs with $ m_{\ell\ell} - m_Z > 25$ GeV

ATLAS-CONF-2012-078

Data	MC	Data/MC	VVV	WZ^*	WW	ZZ^*	Z+jets	Тор
439	438 ± 24	1.00 ± 0.07	2.95 ± 0.13	350 ± 10	0.21 ± 0.12	48 ± 4	36 ± 13	0.8 ± 0.4
244	210 ± 40	1.15 ± 0.23	0.25 ± 0.04	12.3 ± 0.7	0.05 ± 0.05	90 ± 4	110 ± 40	0.57 ± 0.29
828	860 ± 40	0.96 ± 0.06	1.7 ± 0.1	351 ± 9	0.02 ± 0.04	290 ± 10	216 ± 30	0.50 ± 0.34
6	6.2 ± 1.1	1.0 ± 0.4	0.15 ± 0.04	0.78 ± 0.31	0.00 ± 0.00	0.23 ± 0.08	0.13 ± 0.13	4.8 ± 0.8
	Data 439 244 828 6	$\begin{array}{ c c c c c c c } \hline Data & MC \\ \hline 439 & 438 \pm 24 \\ 244 & 210 \pm 40 \\ 828 & 860 \pm 40 \\ 6 & 6.2 \pm 1.1 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DataMCData/MC VVV 439438 ± 24 1.00 ± 0.07 2.95 ± 0.13 244 210 ± 40 1.15 ± 0.23 0.25 ± 0.04 828 860 ± 40 0.96 ± 0.06 1.7 ± 0.1 6 6.2 ± 1.1 1.0 ± 0.4 0.15 ± 0.04	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $N_{\rm jets}$

3 lepton analysis (2011)

		W	(Z/γ^*)	WW	ZZ	Z+jets	Тор	
Pre-selection		3	92±24	2.26 ± 0.33	85±7	1720 ± 230	38.6±1.2	
Z enriche	d	3	90±23	1.84 ± 0.27	85±7	1720 ± 230	30.2±1.1	
At most 1 j	et,							
not <i>b</i> -tagge	ed	3	35 ± 21	1.65 ± 0.27	75±6	1550 ± 210	5.0 ± 0.5	
$E_{\mathrm{T,rel}}^{\mathrm{miss}} > 40 \mathrm{C}$	GeV	1	06±7	0.60 ± 0.15	$1.9{\pm}0.4$	5.2 ± 2.8	1.88±0.30	
Z mass ver	to	6	6.6±0.7	0.39 ± 0.12	0.31±0.11 1.5±1		1.10±0.22	
All cuts		3	5.2±0.8	0.09 ± 0.06	0.17 ± 0.07		0.28±0.12	
Z depleted		1.	36±0.15	0.42±0.11	0.15 ± 0.05	2.1±0.8	8.4±0.6	
At most 1 jet,								
not <i>b</i> -tagged		1.0	08 ± 0.13	0.37 ± 0.10	0.15±0.05 2.0±0.7		1.27 ± 0.29	
$E_{\rm T,rel}^{\rm miss} > 25 { m GeV}$		0.4	49±0.07	0.17 ± 0.07	0.03 ± 0.03		0.52±0.20	
All cuts		0.1	21±0.07	0.00 ± 0.05	0.03 ± 0.03		0.01±0.10	
		-				ATLAS-CC)NF-2012-078	
CR	Obse	erved	Expected	Data/MC	$W(Z/\gamma^*)$	WW + ZZ	Z+jets	To
	20		21 5	0.00 0.05	20 5	0.50 0.15	0.1.0.1	0.1.6

		1	,	× 1 1 /		5	1
Z enriched : WZ	30	31±5	0.98±0.25	30±5	0.52±0.17	0.4±0.4	0.16 ± 0.10
Z enriched : Z + jets	365	360 ± 80	1.02 ± 0.23	127 ± 21	32±7	200 ± 50	0.52 ± 0.15
Z enriched : T op	84	75.2±1.9	1.12±0.13	0.10 ± 0.04	0.10 ± 0.12	0.5 ± 0.4	74.4±1.8
Z depleted : Top	63	59.3±1.6	1.06 ± 0.14	0.04 ± 0.02	0.05 ± 0.03	0.09 ± 0.09	59.1 ± 1.6

3-lepton analysis (2011)

	ZZ	VVV	Fakes	Total Bkg.	VH(125)	Data
4 leptons	164±6	1.89 ± 0.08	8.8±5.8	175±10	0.89 ± 0.04	182
$E_{\rm T}^{\rm miss}$ and $p_{\rm T}$	41.8±1.6	1.65 ± 0.07	7.8 ± 5.3	51.3 ± 5.6	0.71 ± 0.03	55
Jet multiplicity and b-veto	30.8 ± 1.1	1.30 ± 0.06	0.31±0.11	32.5 ± 1.2	0.52 ± 0.02	35
Mass cuts	2.97 ± 0.15	0.22 ± 0.02	0.05 ± 0.03	3.24 ± 0.16	0.41 ± 0.02	2
Angular cut	1.88 ± 0.12	$0.20{\pm}0.02$	0.04 ± 0.02	2.12 ± 0.12	0.39 ± 0.02	2
1 SFOS pair	0.24±0.04	0.08 ± 0.01	0.00 ± 0.01	0.33±0.05	0.19 ± 0.01	2
Overlap removal	0.23 ± 0.04	0.08 ± 0.01	0.00 ± 0.01	0.32 ± 0.05	0.18 ± 0.01	2
2 SFOS pairs	1.64 ± 0.11	0.12 ± 0.01	0.04 ± 0.02	1.79 ± 0.11	0.20 ± 0.01	0
4ℓ system cuts	0.72 ± 0.07	0.11 ± 0.01	0.04 ± 0.02	$0.86 {\pm} 0.08$	0.18 ± 0.01	0
Overlap removal	0.70 ± 0.07	$0.10{\pm}0.01$	0.04 ± 0.02	$0.84 {\pm} 0.08$	0.17 ± 0.01	0

	Selection
	2 SFOS pairs of isolated leptons
	highest $p_{\rm T}$ lepton: $p_{\rm T} > 25$ GeV
	second highest $p_{\rm T}$ lepton: $p_{\rm T} > 20 \text{ GeV}$
ZZ CR	third highest $p_{\rm T}$ lepton: $p_{\rm T} > 15 \text{ GeV}$
	fourth highest $p_{\rm T}$ lepton: $p_{\rm T} > 10 \text{ GeV}$
	at most one jet with $p_{T,jet} > 25 \text{ GeV}$
	no <i>b</i> -tagged jets with $p_{\rm T} > 25$ GeV
	$ m_{\ell_2 \ell_3} - m_Z < 10 \text{ GeV}$
	$m_{\ell_0\ell_1} > 65 \text{ GeV}$
	overlap removal with dilepton analysis

	$Z(H \to WW)$	Data	MC	Data/MC	ZZ^*	Тор	VVV	WZ^*	Z+jets
ZZ CR	0.03 ± 0.00	100	100.00 ± 3.19	1.00 ± 0.10	99.42 ± 3.19	0.03 ± 0.02	0.55 ± 0.03	0.00 ± 0.01	0.00 ± 0.01
									NE 0040 070

ATLAS-CONF-2012-078

The Standard Model Higgs boson

(43.8 %) (10.5 %) (45.7 %)

iiii

WW BR

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

The total leptonic final state it is easier to analyse due a more clear signature of the event