HIGHLIGHTS FROM LHCB

Greig Cowan On behalf of the LHCb collab. Epiphany XX, Jan 8th 2014

THE LHCB COLLABORATION

 \blacksquare ~900 physicists from 64 universities/laboratories in 16 countries.

LHCD

- Running since 2010, Link to > 160 papers.
- $\mathcal{O}(100k) \ b\overline{b}$ pairs produced/sec.

- Rare *B* decays
- *CP* violation in the B_s^0 system
- Charm physics
- Spectroscopy
- QCD and electroweak

THE LHCB DETECTOR

A TYPICAL LHCB EVENT

2008 JINST 3 S08005

LUMINOSITY LEVELLING

LHCb Integrated Luminosity pp collisions 2010-2012

- LHCb designed to run at lower luminosity than ATLAS/CMS.
 - LHCb tracking/PID is sensitive to pile-up.
- LHC pp beams are displaced to reduce instantaneous luminosity stable running conditions.
- $\langle \mathcal{L} \rangle_{2011} \sim 2.7 \times 10^{32} cm^{-2} s^{-1}$
- $\langle \mathcal{L} \rangle_{2012} \sim 4.0 \times 10^{32} cm^{-2} s^{-1}$

SEARCHING FOR NEW PHYSICS

- **INDIRECT**: Higher energy particles can appear virtually in quantum loops
- Flavour physics gives constraints on scale of new physics, > TeV.

•
$$\mathcal{L}_{SM} + \frac{1}{\Lambda^2} (\overline{Q}_i Q_j) (\overline{Q}_i Q_j)$$

^b		/"
B_s^0	W $\overline{\gamma, Z^0}$	\checkmark
s '	u, c, t	۲ "

 $V_{\rm us}V_{\rm ub}^*+V_{\rm cs}V_{\rm cb}^*+V_{\rm ts}V_{\rm tb}^*=0$

Operator	Bounds on Λ	in TeV $(c_{ij} = 1)$	Bounds on a	Observables	
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	$9.0 imes 10^{-7}$	3.4×10^{-9}	Δm_K ; ϵ_K
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	$6.9 imes 10^{-9}$	2.6×10^{-11}	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^{\mu} u_L)^2$	1.2×10^3	2.9×10^3	$5.6 imes10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	1.5×10^4	$5.7 imes 10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	$3.3 imes 10^{-6}$	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	$1.1 imes 10^2$		$7.6 imes 10^{-5}$		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$3.7 imes 10^2$		1.3	Δm_{B_s}	

Isidori et al, arXiv:1002.0900

RARE DECAYS: $B \to \mu^+ \mu^-$

Jose Lazo-Flores, FPCP2013

Requires FCNC transition.

• Helicity suppressed by factor $(m_{\mu}/m_B)^2$.

$$B(B_s^0 \to \mu\mu) = (3.35 \pm 0.28) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu\mu) = (1.07 \pm 0.10) \times 10^{-10}$

• Sensitive to new physics. i.e., MSSM $\mathcal{B} \propto (\tan \beta)^6$.

First evidence for $B_s^0 \rightarrow \mu^+ \mu^-!$ M

• Normalise to large sample of $\mathcal{B}(B^+ \to J/\psi K^+)$ or $\mathcal{B}(B^0 \to K^+\pi^-)$.

• Systematic comes from modelling of the background in the fit.

Other rare decays: $K^0_s \to \mu^+ \mu^-$ and $D^0 \to \mu^+ \mu^-$

- FCNC, suppressed in SM: $\mathcal{B}^{\text{SM}}(K_{\text{S}}^{0} \rightarrow \mu^{+}\mu^{-}) = (5.0 \pm 1.5) \times 10^{-12}$
- $\mathcal{B}(K^0_{\rm S} \to \mu^+ \mu^-) < 11 \times 10^{-9} @ 90\%$ CL.
- ×30 better than previous limit!
- Mass resolution of $\sim 4 \,\mathrm{MeV}/c^2$.

- FCNC, large GIM suppression due to absence of high-mass d-type quark and helicity suppression.
- $\quad \blacksquare \ \mathcal{B}^{\rm SM}(D^0 \to \mu^+ \mu^-) < \sim 6 \times 10^{-11}$
- $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \times 10^{-9} @ 90\%$ CL.
- ×20 better than previous limit!

FCNC $b \to s$ transitions: $B^0 \to K^{(*)} \mu^+ \mu^-$

 Rich system of observables (rates, angles, asymmetries) that are sensitive to NP.

$$\ \ \, q^2\equiv m(\mu^+\mu^-)^2$$

 $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K + \frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_K\cos2\theta_\ell \\ & -F_\mathrm{L}\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi \\ & +S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi \\ & +S_6\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi \\ & +S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix},$

 $F_L = K^*$ longitudinal polarisation fraction

$$A_{\rm FB} = 4/3 \ S_6$$

$B^0 \rightarrow K^{(*)} \mu^+ \mu^-$ Form factor independent variables at large recoil

 New basis of observables, less dependent on hadronic form factors (Descotes-Genon et al arXiv:1303.5794).

•
$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,6,8}}{\sqrt{F_L(1-F_L)}}$$

 Across 24 bins, global discrepancy wrt SM is 2.8σ.

Possible explanation: smaller value of C_9 Wilson coefficient through a Z'? (Gauld et al arXiv:1308.1959, Buras, Girrbach arXiv:1309.2466)

$b \rightarrow s\gamma$ FCNC: Photon Polarisation

- $\checkmark \gamma$ from b decays is **left-handed**, but NP could modify this.
- Measure λ_{γ} from 3-body decay of K_{res} : $B \rightarrow K_{\rm res} \gamma \rightarrow P_1 P_2 P_3 \gamma$
- Count number of γ 's emitted above/below $\vec{p_1} \times \vec{p_2}$ plane \rightarrow proportional to λ_{γ} .
- Use $K^+\pi^-\pi^+$: complication of many interfering resonances.

$$A_{\rm ud} = -0.085 \pm 0.019(stat) \pm 0.003(syst)$$
 4.6 σ from zero

5500 6000

DIRECT CP VIOLATION IN B MESON DECAY

- Arises from interfering amplitudes with different weak and strong phases.
- B⁰ mode more precise than and compatible with B-factories.

$$A_{\rm CP} = \frac{\Gamma(\overline{B}^0_{(\rm s)} \to \overline{f}) - \Gamma(B^0_{(\rm s)} \to f)}{\Gamma(\overline{B}^0_{(\rm s)} \to \overline{f}) + \Gamma(B^0_{(\rm s)} \to f)}$$

• B_s^0 mode: first observation!

LARGE DIRECT CP violation in 3-body B decays

$A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.032 \pm 0.008(\text{stat}) \pm 0.004(\text{syst}) \pm 0.007(J/\psi K^{\pm})$	2.8σ
$A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.043 \pm 0.009(\text{stat}) \pm 0.003(\text{syst}) \pm 0.007(J/\psi K^{\pm})$	3.7σ

- First evidence of inclusive CP asymmetry in charmless 3-body decays, but...
- ... CP violation > 50% in localised regions of Dalitz space: not expected!
- Compound *CP* violation (Cheng et alPRD 71, 014030 (2005)) or hadron rescattering?

Measurement of γ from $B^{\pm} \rightarrow D^0 K^{\pm}$

- Use interference between $B^{\pm} \rightarrow D^0 K^{\pm}, D^0 \rightarrow f$ decay amplitudes
- Small theoretical uncertainty on the tree level diagrams – no NP contributions

- **GLW:** f is CP eigenstate $(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$ Large rate, small interference. PLB 712 (2012) 203
- **2 ADS:** *f* is common final state $(D^0 \rightarrow K^{\pm}\pi^{\mp}, K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})$ **b** Lower rate, larger interference.
 - PLB 723 (2013) 44, PLB 712 (2012) 203
- **3** GGSZ: f is common final state $(D^0 \rightarrow K_S^0 K^+ K^-, K_S^0 \pi^+ \pi^-)$ **a** Requires Dalitz analysis. **b** PLB 718 (2012) 43

Measurement of γ : LHCb combination

• $B^{\pm} \to D^0 K^{\pm}$ results are combined to single confidence interval.

- Single best measurement, agrees with B-factories.
- Improvements when using 3 fb⁻¹ for ADS/GLW modes.
- Combination using $B^{\pm} \to D^0 \pi^{\pm}$ events is available, only using 2011 data (PLB 726 (2013) 151-163).

 $\mathcal{P}(t|\sigma_t) \propto \left[\Gamma e^{-\Gamma t} \tfrac{1}{2} \left[\cosh(\Delta\Gamma t/2) + \mathcal{D}\cos(\Delta m \, t)\right]\right] \otimes G(t; S_{\sigma_t}, \sigma_t) \varepsilon(t)$

- Time dependent *CP* violation measurements are core LHCb physics programme.
- Excellent decay time resolution: $\sigma \sim 45$ fs.
- Best measurement of Δm_s using $B_s^0 \to D_s \pi$

Δm_{d} USING $B^{0} \rightarrow D\pi, \ B^{0} \rightarrow J/\psi K^{*0}$

Semileptonic $\Delta m_s, \Delta m_d$

- $1.8 \times 10^6 B^0_{(s)} \to D^-_{(s)} \mu^+ \overline{\nu}_{\mu} (+$ anything) events.
- Time resolution is $\sim 1 \, \text{ps}$, dominated by correction to momentum from missing ν_{μ} .

Ds signal region

• First observation of B_s^0 mixing with only semileptonic decays.

0.20 0.15 0.10

0.05

-0.00

-0.05

-0.10

-0.15

-0.20 [b] IINd

LHCb

 $\Delta m_s = 17.93 \pm 0.22 \pm 0.15 \, \mathrm{ps}^{-1}$

CP violation in $B^0_{(s)}$ mixing

• *CP* violation in mixing is very small in the SM.

•
$$a_{sl} \equiv 1 - \left| \frac{q}{p} \right|^2$$

Lenz + Nierste, 2011

$$a_{sl}^d(B^0) = (-4.1 \pm 0.6) \times 10^{-4}$$

 $a_{sl}^s(B_s^0) = (+1.9 \pm 0.3) \times 10^{-5}$

• Experimentally, measure time-integrated asymmetry in semileptonic B_s^0 decays (between $D_s^+ X \mu^- \bar{\nu}_{\mu}$ and $D_s^- X \mu^+ \nu_{\mu}$)

$$A_{\rm CP}^{\rm measured} = \frac{\Gamma[{\rm D}_{\rm s}^{-}\mu^{+}] - \Gamma[{\rm D}_{\rm s}^{+}\mu^{-}]}{\Gamma[{\rm D}_{\rm s}^{-}\mu^{+}] + \Gamma[{\rm D}_{\rm s}^{+}\mu^{-}]} = \frac{a_{\rm sl}^{\rm s}}{2} + \left[a_{\rm p} - \frac{a_{\rm sl}^{\rm s}}{2}\right] \frac{\int e^{-\Gamma_{\rm s} t} \cos(\Delta m_{\rm s} t)\varepsilon(t)dt}{\int e^{-\Gamma_{\rm s} t} \cosh(\Delta \Gamma_{\rm s}/2t)\varepsilon(t)dt}$$

 $a_{\rm sl}^{\rm s} = [-0.06 \pm 0.50 ({\rm stat}) \pm 0.36 ({\rm syst})]\%$

- Fast B_s^0 mixing dilutes second term below precision of this measurement.
- Dominant systematic is from limited statistics in control sample.
- 3σ tension with SM in the D0 result, not confirmed or excluded by LHCb.

CP violation in $B^0_{(s)}$ meson mixing/decay

- Decay to CP-eigenstate f $A_f \equiv \langle f | \mathcal{H} | B^0 \rangle, \ \overline{A}_f \equiv \langle f | \mathcal{H} | \overline{B}^0 \rangle$
- Use interference between mixing and decay to measure *CP*-violating phase φ_f = φ_{mix} - 2φ_{dec}
- Possible pollution from penguin decays.

GOLDEN MODES

$$B^{0} \to J/\psi K_{\rm S}^{0} : \phi_{J/\psi K_{\rm S}^{0}}^{\rm SM} = 2\beta = 0.84 \pm 0.05 \, \text{rad}$$
$$B_{s}^{0} \to J/\psi \phi : \phi_{J/\psi \phi}^{\rm SM} = -2\beta_{s} = -0.036 \pm 0.002$$

CKMfitter, PRD 83, 036004 (2011)

$\sin 2\beta$ USING $B^0 \rightarrow J/\psi K_{\rm s}^0$

- Can LHCb reproduce B-factory results?
- ~ 8200 $B^0 \rightarrow J/\psi K_{\rm S}^0$ candidates in 1 fb⁻¹
- Tagging power: $\varepsilon_{\text{tag}} \mathcal{D}^2 = (2.38 \pm 0.27)\%$

$$\begin{split} S_{J\!/\psi\,K^0_{\rm S}} &= 0.73 \pm 0.07 \pm 0.04 \\ C_{J\!/\psi\,K^0_{\rm S}} &= 0.03 \pm 0.09 \pm 0.01 \end{split}$$

$$A_{CP}(t) \equiv \frac{\Gamma_{B^0 \rightarrow f} - \Gamma_{\overline{B}^0 \rightarrow f}}{\Gamma_{B^0 \rightarrow f} + \Gamma_{\overline{B}^0 \rightarrow f}} = S_{J/\psi \, K_S^0} \sin(\Delta m \, t) + C_{J/\psi \, K_S^0} \cos(\Delta m \, t)$$

Combined measurement of ϕ_s

- Combine $B_s^0 \to J/\psi \phi$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ (1/3 of $J/\psi \phi$ stats).
- $\Delta\Gamma_s$ is in impressive agreement with HQE calculations. $\Delta\Gamma_s \neq 0 \Rightarrow$
 - \Rightarrow the heavy B_s^0 eigenstate lives longer than the light one! (two lifetimes)
 - $\Rightarrow \mathcal{B}^{\exp}(B^0_s \to f) \neq \mathcal{B}^{\text{theo}}(B^0_s \to f) \text{ (PRD 86, 014027 (2012))}$
- NP contribution to B_s^0 mixing is limited to < 30% at 3 σ (Lenz arXiv:1203.0238v2).

$$\begin{split} \phi_s &= 0.01 \ \pm 0.07 \ ({\rm stat}) \pm 0.01 \ ({\rm syst}) \ {\rm rad}, \\ \Gamma_s &\equiv (\Gamma_{\rm L} + \Gamma_{\rm H})/2 \ = 0.661 \pm 0.004 \ ({\rm stat}) \pm 0.006 \ ({\rm syst}) \ {\rm ps}^{-1}, \\ \Delta \Gamma_s &\equiv \Gamma_{\rm L} - \Gamma_{\rm H} \ = 0.106 \pm 0.011 \ ({\rm stat}) \pm 0.007 \ ({\rm syst}) \ {\rm ps}^{-1}, \end{split}$$

$B_s^0 \to D_s^+ D_s^-$ effective lifetime

- Final state is *CP*-even, ϕ_s is small
- $\Rightarrow \tau_{\rm eff} \approx 1/\Gamma_L$

 B^- / \overline{B}_s^0 relative efficiency

1.6

 $\tau^{\rm eff}_{B^0_s \to D_s D_s}$

- Determine efficiency using $B^+ \to D^0 D_s^+$ control channel.
- Main systematic is acceptance.

Other B_s^0 effective lifetimes

Channel	$C\!P$	$ au^{ m eff}[{ m ps}]$	Ref.
$B_s^0 \to D_s^+ D_s^-$	even	$1.379 \pm 0.026 \pm 0.017$	arxiv:1312.1217, PRL
$B_s^0 \rightarrow K^+ K^-$	even	$1.455 \pm 0.046 \pm 0.006$	PLB 716 (2012) 393-400
$B_s^0 \rightarrow J/\psi f_0(980)$	odd	$1.700 \pm 0.040 \pm 0.026$	PRL 109 (2012) 152002
$B_s^0 \to J/\psi K_s^0$	odd	$1.75 \pm 0.12 \pm 0.07$	Nucl. Phys. B 873 (2013) 275-292

• Perform naive combination of these lifetimes and results on $\Delta\Gamma_s$ and Γ_s from $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \pi \pi$.

• Everything in agreement with SM+HQE predictions.

Λ_b lifetime

• HQE:
$$\frac{\tau_{\Lambda_b}}{\tau_{B^0}} = 0.98 + \mathcal{O}(1/m_b^3)$$

- Make use of a previously unobserved decay mode: $\Lambda_b \rightarrow J/\psi \, pK.$
- Can use method of normalisation to topologically similar $B^0 \to J/\psi K^*$.

Experiment LHCs (2013) [J/ψβK] CMS (2012) [J/ψA] ATLAS (2012) [J/ψA] D0 (2012) [J/ψA] CDF (2011) [J/ψA] CDF (2010) [A⁺₂π] D0 (2007) [J/ψA] D0 (2007) [Semileptonic decay] DLPH (1999) [Semileptonic decay] OPAL (1998) [Semileptonic decay] CDF (1996) [Semileptonic decay]

 $\frac{\tau_{\Lambda_b}}{\tau_{B^0}} = 0.976 \pm 0.012 \pm 0.006_{27/33}$

MIXING AND CP VIOLATION

- Mixing in charm sector dominated by long distance effects \Rightarrow very small CPV expected.
- First > 5σ observation of charm mixing made by LHCb (PRL 110, 101802 (2013)).
- right-sign: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^- \pi^+) \pi^+$ (Cabibbo favoured - 54M events)
- wrong-sign: $D^{*+} \rightarrow D^0 \pi^+ \rightarrow (K^+ \pi^-) \pi^+$ (DCS, mixing+CF - 0.23M events)

$$R(t) \equiv \frac{N_{\rm ws}(t)}{N_{\rm rs}(t)} \approx R_D + \sqrt{R_D}y't + \frac{1}{4}(x'^2 + y'^2)t^2$$

• No evidence for CP violation when studying D^0 and \overline{D}^0 separately.

$$\begin{split} x'^2 &= (5.5 \pm 4.9) \times 10^{-5} \\ y' &= (4.8 \pm 1.0) \times 10^{-3} \\ A_D &\equiv \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-} = (-0.7 \pm 1.9)\% \\ |q/p| &= 1.00 \pm 0.25 \end{split}$$

EXOTIC SPECTROSCOPY: QUANTUM NUMBERS OF X(3872)

- What is nature of this state (tetra-quark, or DD^* molecule, or ...?)
- Must be C = + since $X(3872) \rightarrow J/\psi \gamma$ has been observed (Belle).
- CDF previously ruled out all J^{PC} except 1^{++} and 2^{-+} .
- $\blacksquare B^+ \to X(3872)K^+,$ $X(3872) \rightarrow J/\psi \pi^+\pi^-$. 313 events

≥⁴⁰⁰

1

395

3900

3850

3800

 $h_c(2P)$

 ${}^{0}\overline{D}{}^{0}$ threshold

X(3872)

ų(3770)

₂(2)

ID

 $\psi_2(1D) \psi_3(1D)$

• $J_{PC} = 1^{++}$ established - favours exotic interpretation.

ELECTROWEAK AND QCD MEASUREMENTS

LHCb allows exploration of EW sector in forward region.

• Measurements of Z+jets are sensitive to the gluon content of the proton.

If Jets are reconstructed using the anti-kT algorithm with R = 0.5

SO MUCH MORE...

$C\!P$ violation and rare decays

- B mixing
- Measurement of γ
- *CP* violation in penguin decays
- \blacksquare Charmless B decays
- Many rare decay modes $(p\overline{p})$

CHARM PHYSICS

- D^0 mixing
- CP violation in charm

PA COLLISIONS

Electroweak physics

- \blacksquare W and Z production
- Higgs forward production

LEPTON FLAVOUR/NUMBER VIOLATION

More details in talk by B. Rachwal

PRODUCTION AND SPECTROSCOPY

- Fragmentation fractions
- \blacksquare B_c decays and lifetimes
- Excited states
- Quarkonia polarisation
- XYZ states
- (Double) heavy baryons

Public results: http://lhcbproject.web.cern.ch/lhcbproject/CDS/cgi-bin/index.php

LOOKING FORWARD: LHCB UPGRADE

- LHC will be upgraded to run at higher luminosity from $\sim 2018.$
- LHCb will run at $\mathcal{L} \ge 10^{33} cm^{-2} s^{-1}$.

- Upgraded detector will be read out at 40MHz.
 - Factor-10 increase signal yields.
 - Existing design will saturate at higher luminosities.

Sensitivity of key measurements (LHCb-PUB-2013-015)

		LHC era		HL-L	HC era
	Run 1	$\operatorname{Run} 2$	Run 3	Run 4	Run 5+
$\phi_s(B^0_s \to J/\psi\phi)$	0.05	0.025	0.013	0.009	0.006
$\phi_s(B^0_s \to \phi \phi)$	0.18	0.12	0.04	0.026	0.017
$\frac{\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)}{\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-)}$	220%	110%	60%	40%	28%
$q_0^2 A_{\rm FB}(K^{*0}\mu^+\mu^-)$	10%	5%	2.8%	1.9%	1.3%
γ	7°	4°	1.7°	1.1°	0.7°

- Flavour physics provides access to high energy scales where new physics may exist.
- LHCb provides a unique laboratory for the precision study of heavy flavour
 - \blacksquare CP violation in B decays.
 - \blacksquare Rare decays of B mesons.
 - Exotic spectroscopy.
 - And more...

- Most LHCb measurements are **statistics limited**.
- LHCb upgrade will move forward the precision frontier.

2015–2017 double existing dataset 2017–2019 LS2, upgrade detector 2019–... collect 50 fb^{-1} , with more efficient trigger

BACKUP

•

The vertex locator

- 21 silicon strip detectors, 8mm from beam line.
- Operates in vacuum, separated from LHC vacuum by $300\mu m$ Al foil.
- Primary vertex resolution $\sim 13, 13, 69\mu$ m in x, y, z.
- IP resolution of tracks with $p_T > 2 \text{ GeV/c}^2$ is $\sim 20 \mu \text{m}$.
- Decay time resolution $\sim 45 \,\mathrm{fs}$ for many *B* decay channels.

PARTICLE ID

36 / 33

TRACKING

THE TRIGGER

• Approach: try to maintain high efficiency for manageable data rates.

CP VIOLATION IN THE STANDARD MODEL

• Coupling of charged current interaction to up, down-type quarks given by CKM matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

a 3 generations + **1 phase** $\rightarrow \bar{\eta} \neq 0$ is only source of *CP* violation in
SM.
b $A = 0.80 \pm 0.02, \lambda = 0.225 \pm 0.001$
c $\bar{\rho} = 0.140 \pm 0.027, \bar{\eta} = 0.343 \pm 0.015$

Brief introduction to $B_{s,d}^0$ meson mixing

- **1** Large mass of *b* quark allows for reliable calculations.
- **2** Mixing is FCNC process \rightarrow sensitive to new physics contributions.
- **3** Need **precision** measurements.

Δm_s using $B_s^0 \to D_s^- \pi^+$

$$A_{\rm mix}(t) = \frac{N({\rm unmixed}) - N({\rm mixed})}{N({\rm unmixed}) + N({\rm mixed})} \propto \frac{\cos(\Delta m t)}{\cosh(\Delta \Gamma t/2)}$$

- 5 different D_s decay modes: $D_s \rightarrow (K^+K^-)\pi^-, D_s \rightarrow (K^-\pi^+)\pi^-, D_s \rightarrow \pi^+\pi^-\pi^-$
- 2, 3, 4 track displaced vertex trigger. → **34k events**
- 1 large IP track, $p_T > 1.7 \text{ GeV}/c$.

IMPACT ON NEW PHYSICS

- $\Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$
- $\ \ \, \Delta^{SM}_s=1$
- NP contribution to B⁰_s mixing is limited to < 30% at 3σ.

Next step

- Use full 2011+2012 LHCb dataset (factor 3 more data).
- Precision measurement.
 - Control of systematic uncertainties is **essential**.
 - Extend physics reach by including rarer modes: $B_s^0 \rightarrow \psi(2S)\phi, B_s^0 \rightarrow J/\psi\eta^{(\prime)}\dots$

ϕ_s from $B^0_s \to \phi \phi$

- First measurement using $b \rightarrow s\overline{s}s$ transition.
- Expect cancellation between (small) phase in the mixing and decay.
 - Measuring $\phi_s \neq 0$ would be null test of SM.

5

 $\phi_s \in [-2.46, -0.76]$ rad at 68% CL

Candidates / (0.33 ps)

Candidates / 0.1 70

10

0

-0.5

$\phi_s \text{ from } B^0_s \to \phi \phi$

 $\phi_s \in [-2.46, -0.76] \ \mathrm{rad}$ at 68% CL

Hopefully help to resolve the $\sin 2\beta^{eff}$ situation.

Amplitude analysis of $B^0 \to J/\psi K^+ K^-$

arXiv:1308.5916

- Amplitude analysis $\rightarrow 3.9\sigma$ evidence for $B^0 \rightarrow J/\psi a_0(980), a_0(980) \rightarrow K^+K^-$.
- No evidence of $B^0 \to J/\psi \phi$.
- NR contribution dominates.

Consequence of $\Delta\Gamma_s \neq 0$

- Leads to different value for BR compared to theoretical ones.
- Biases of ~ 10%, depending on decay mode.

$$\mathrm{BR}^{\mathrm{exp}}(B^0_s \rightarrow f) = \mathrm{BR}^{\mathrm{theo}}(B^0_s \rightarrow f) \left[\frac{1 + y_s A_f}{1 - y_s^2} \right]$$

• B_s^0 has two lifetimes, can define "effective lifetime".

$$\label{eq:tensor} \boxed{\tau_{\rm eff} = \frac{1}{\Gamma_{\rm s}} \left[\frac{1+2 y_{\rm s} A_{\rm f} + y_{\rm s}^2}{(1-y_{\rm s}^2)(1+y_{\rm s} A_{\rm f})} \right]}$$

PRD 86, 014027 (2012)

PLB 716 (2012) 393-400

$B_s^0 \to K^+ K^-$ effective lifetime

- Penguin dominated decay ⇒ sensitive to NP at loop level.
- K^+K^- final state is CP-even eigenstate \Rightarrow decay is produced by light B_s^0 mass eigenstate.
 - Assuming no CP-violation: $\tau_{B_s^0 \to KK} = 1/\Gamma_L.$

$B_s^0 \rightarrow J/\psi f_0(980)$ effective lifetime

- $J/\psi f_0(980)$ final state is CP-odd eigenstate \Rightarrow decay is produced by heavy B_s^0 mass eigenstate.
 - Assuming no CP-violation:

 $\tau_{Bs \to KK} = \tau_H.$

• Main systematic related to acceptance from MC.

$B^0_s ightarrow J\!/\!\psi\,K^0_{ m s}$ effective lifetime $_{ m Nucl. Phys. B 873}$ (2013) 275-292

- $J/\psi K_{\rm S}^0$ final state is another CP-odd eigenstate.
- Split sample of events depending on $K_{\rm S}^0$ reconstruction (LL, DD).
- Determine decay time acceptance using large sample of $B^0 \to J/\psi K_{\rm S}^0$.
- Main systematic comes from background parameterisation.
- Future: use to control penguin pollution in $\sin 2\beta$ from $B^0 \to J/\psi K_{\rm S}^0$.

- > 6σ , resonant+interference accounts for 20% bigger than predicted.
- Compatible with the properties of the $\psi(4160)$ observed by BES.
- Important for controlling charmonium effects in future inclusive and exclusive $b \rightarrow s\mu^+\mu^-$ measurements.

FLAVOUR TAGGING

Specialised tagging algorithms to analyse event to determine initial flavour b or \overline{b} .

OPPOSITE-SIDE Use charge of leptons/hadrons from other B meson decay

SAME-SIDE Use charge of kaon produced from fragmentation of signal \$B\$

FLAVOUR TAGGING

Opposite-side

•
$$\omega = p_0 + p_1(\eta - \langle \eta \rangle)$$

• Effective tagging efficiency $2.6 \pm 0.4\%$

- Same-side kaon
- Effective tagging efficiency 1.2 ± 0.3%

 $B_s^0 \to J/\psi \phi$

$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \right]$

 $+ c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)]$

\boldsymbol{k}	$f_k(heta_\mu, heta_K,arphi_h)$	N_k	a_k	b_k	c_k	d_k
1	$2\cos^2\theta_K\sin^2\theta_\mu$	$ A_0 ^2$	1	D	C	-S
2	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \cos^2 \varphi_h\right)$	$ A_{\parallel} ^2$	1	D	C	-S
3	$\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \varphi_h \right)$	$ A_{\perp} ^2$	1	-D	C	S
4	$\sin^2 \theta_K \sin^2 \theta_\mu \sin 2\varphi_h$	$ A_{\parallel}A_{\perp} $	$C\sin(\delta_{\perp}-\delta_{\parallel})$	$S\cos(\delta_{\perp}-\delta_{\parallel})$	$\sin(\delta_{\perp}-\delta_{\parallel})$	$D\cos(\delta_{\perp}-\delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \cos \varphi_h$	$ A_0A_{\parallel} $	$\cos(\delta_{\parallel}-\delta_{0})$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel}-\delta_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$-\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \sin \varphi_h$	$ A_0A_\perp $	$C\sin(\ddot{\delta}_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}\sin^2\theta_{\mu}$	$ A_{\rm S} ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\dot{\theta}_K\sin 2\theta_\mu\cos\varphi_h$	$ A_{\rm S}A_{\parallel} $	$C\cos(\delta_{\parallel}-\delta_{ m S})$	$S\sin(\delta_{\parallel}-\delta_{ m S})$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$D\sin(\delta_{\parallel}-\delta_{ m S})$
9	$-\frac{1}{3}\sqrt{6}\sin\theta_K\sin 2\theta_\mu\sin\varphi_h$	$ A_{\rm S}A_{\perp} $	$\sin(\delta_{\perp}-\delta_{ m S})$	$-D\sin(\ddot{\delta}_{\perp}-\delta_{ m S})$	$C\sin(\ddot{\delta}_{\perp}-\delta_{ m S})$	$S\sin(\delta_{\perp}-\delta_{ m S})$
10	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$	$ A_{\rm S}A_0 $	$C\cos(\delta_0-\delta_{ m S})$	$S\sin(\delta_0-\delta_{ m S})$	$\cos(\delta_0-\delta_{ m S})$	$D\sin(\delta_0-\delta_{ m S})$

- In SM, non-resonant $BR(B^0_{(s)} \to \mu^+ \mu^- \gamma(\to \mu^+ \mu^-)) < 10^{-10}$ [PRD70 (2004) 114028]
- Resonant $BR(B_s^0 \to J/\psi \phi) = 2.3 \times 10^{-9}$
- Normalise to $BR(B^0_d \to J/\psi K^*(892))$, main systematic uncertainty.
- $BR(B_s^0 \to 4\mu) < 1.6 \times 10^{-8}$ @ 95% CL
- $BR(B^0 \to 4\mu) < 6.6 \times 10^{-9}$ @ 95% CL

SIGNAL SELECTION

- Single and di-muon trigger.
- Classify signal using 2D discriminant:
 - 1 $m(\mu\mu)$
 - **2** BDT containing: B_s^0 impact parameter, p_T ; μp_T , χ^2_{IP} ...
- Train using MC $(B_s^0 \to \mu\mu \text{ and } b\bar{b} \to \mu\mu X)$.
- Calibrate BDT on data:
 - **Background:** $m(\mu\mu)$ sidebands
 - Signal: $B \to hh'$ which has same topology

- Signal shape is Crystal Ball:
 - Mean determined from $B \to hh'$.
 - Resolution from interpolation between charmonium/bottomium resonances ($\sigma_m = 25.0 \pm 0.4 \,\text{MeV}/c^2$).
 - Radiative tail transition point from $B_s^0 \to \mu \mu$ MC.

- Combine 2011 $(1.0 \,\text{fb}^{-1}) + 2012 (1.1 \,\text{fb}^{-1})$ data.
- Float yield of background, B^0 , B^0_s in fit.
- Observe excess of events over bkg-only hypothesis (p-value = 5×10^{-4}).

DECAY TIME RESOLUTION

■ Use prescaled sample of prompt-J/ψ events to extract resolution scale factor.

Use σ_t, per-event decay time error, scaled by S = 1.45 ± 0.06.
If ⟨Sσ_{eff}⟩ ≈ 45 fs ⇒ D ~ 0.73
If ⟨Sσ_{eff}⟩ ≈ 90 fs ⇒ D ~ 0.28

- Use sample of unbiased events to understand trigger efficiency.
- Additional efficiency effect at large decay times: $\varepsilon(t) \propto 1 + \beta t$, $\beta \sim 10^{-2} \,\mathrm{ps}^{-1}$.
- Understand this using data: $B^+ \to J/\psi K^+$.

- Detector geometry and implicit momentum cuts cause majority of effect.
- Knowledge of acceptance is dominant source of systematic error.

TAGGING	THE B^0_s flavour
Tagger	ε_{eff}
OS	$2.29 \pm 0.06\%$
SSK	$0.89 \pm 0.17\%$
Overall	$3.13\pm0.20\%$

ϕ_s from $B^0_s \to J/\psi \phi$ and $B^0_s \to J/\psi \pi^+ \pi^-$

ϕ_s from $B_s^0 \to J/\psi \pi^+ \pi^-$

- $B_s^0 \to J/\psi \pi^+ \pi^-$ is another $\bar{b} \to \bar{c}c\bar{s}$ transition; $\sim 1/3$ of $B_s^0 \to J/\psi \phi$ yield.
- $\pi^+\pi^-$ is > 97.7% CP-odd @ 95% Conf. Level.

RESOLVING THE AMBIGUITY

- Expressions are invariant under the transformation $(\phi_s, \Delta\Gamma_s, \delta_0, \delta_{\parallel}, \delta_{\perp}, \delta_S) \mapsto (\pi \phi_s, -\Delta\Gamma_s, -\delta_0, -\delta_{\parallel}, \pi \delta_{\perp}, -\delta_S)$
- Physical solution: $\Delta \Gamma_{\rm s} > 0$
- $\Delta \Gamma_{\rm s} \neq 0$ implies
 - $\Rightarrow \text{ the heavy } B_s^0 \text{ eigenstate lives longer than} \\ \text{ the light one! (two lifetimes)}$
 - $\Rightarrow \ \mathcal{B}^{\exp}(B^0_s \to f) \neq \mathcal{B}^{\text{theo}}(B^0_s \to f)$ PRD 86, 014027 (2012)

PENGUIN POLLUTIONS

LHCb

5400 M(J/w.K.π) (MeV/c²)

5300

- Penguin contributions to ϕ_s are expected to be small. How can we control them?
- Possible to use $B_s^0 \to J/\psi \bar{K}^{*0}(892)$ ($\bar{b} \to \bar{c}c\bar{d}$) via U-spin symmetry.
 - Angular and time dependent analysis.
 - Direct *CP* asymmetries.

$\begin{split} \phi_s &= 0.07 \pm 0.09 \text{ (stat)} \pm 0.01 \text{ (syst) rad} \\ \Gamma_s &\equiv (\Gamma_{\rm L} + \Gamma_{\rm H})/2 = 0.663 \pm 0.005 \text{ (stat)} \pm 0.006 \text{ (syst) } \text{ps}^{-1} \\ \Delta \Gamma_s &\equiv \Gamma_{\rm L} - \Gamma_{\rm H} = 0.100 \pm 0.016 \text{ (stat)} \pm 0.003 \text{ (syst) } \text{ps}^{-1} \end{split}$								
Source	$[\mathrm{ps}^{-1}]$	$\Delta\Gamma_s$ $[\mathrm{ps}^{-1}]$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel} [rad]	δ_{\perp} [rad]	ϕ_s [rad]	$ \lambda $
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	$^{+0.13}_{-0.21}$	0.22	0.091	0.031
Background subtraction	0.0041	0.002	-	0.0031	0.03	0.02	0.003	0.003
$B^0 \to J/\psi K^{*0}$ background	-	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	-	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	_	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	-	-	-	-	-	-
Upper decay time acc. model	0.0040	_	-	-	-	-	-	-
Length and mom. scales	0.0002	-	-	-	-	-	-	-
Fit bias			0.0010	-	-	-	-	-
Decay time resolution offset	-	-	-	-	-	0.04	0.006	-
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.08	0.011	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	+0.15 -0.23	0.23	0.092	0.038

• Dominant systematics come from angular acceptance, decay time efficiency and background.

$B^0_{s,d}$ mixing observables

$$M_{B^0} \equiv \frac{1}{2}(M_H + M_L) = M_{11}, \qquad \Gamma \equiv \frac{1}{2}(\Gamma_L + \Gamma_H) = \Gamma_{11}$$

 $\Delta m \equiv M_{\rm H} - M_{\rm L} \approx 2 |M_{12}|, ~~ \Delta \Gamma \equiv \Gamma_{\rm L} - \Gamma_{\rm H} \approx 2 |\Gamma_{12}| \cos \phi_{12}$

	SM predictions (Lenz et al, 1102.4274, 1008.1593)					
	B^0	B_s^0				
φ_{12} [rad]	-0.075 ± 0.024	0.004 ± 0.001				
$\Delta \Gamma [\mathrm{ps}^{-1}]$	$(2.7 \pm 0.5) \cdot 10^{-3}$	0.087 ± 0.021				
$\Delta m [ps^{-1}]$	0.555 ± 0.073	17.3 ± 2.6				
a _{fs}	$-(4.1\pm0.6)\cdot10^{-4}$	$(1.9 \pm 0.3) \cdot 10^{-5}$				
$\phi^{c\overline{c}s}$ [rad]	0.84 ± 0.05	-0.036 ± 0.002				

• Flavour specific final states, assuming no CP violation in decay:

$$\mathbf{a}_{\mathrm{fs}} \equiv \frac{\Gamma_{\mathrm{B}^{0} \to \overline{\mathrm{f}}} - \Gamma_{\overline{\mathrm{B}}^{0} \to \mathrm{f}}}{\Gamma_{\mathrm{B}^{0} \to \overline{\mathrm{f}}} + \Gamma_{\overline{\mathrm{B}}^{0} \to \mathrm{f}}} \approx 1 - |\mathbf{q}/\mathbf{p}|^{2} \approx \frac{\Delta\Gamma}{\Delta \mathbf{m}} \tan \varphi_{12} \quad \text{(Guennadi's talk)}$$

Studies of excited B^0_{s} mesons

- First observation of $B_{s2}(5840)^0 \rightarrow B^{*+}K^-$
- Help understand heavy quark effective theory, used for calculating B meson properties.

Semileptonic asymmetries

190k B⁰_s signal candidates in magnetic up and down.
Background asymmetries from K, π → μ mis-id. Small systematic.

