# **Overview of the SUSY results from the ATLAS and CMS experiments**

Janet Dietrich on behalf of the ATLAS & CMS collaborations Deutsches-Elektronen-Synchrotron

CM

Epiphany 2014



# **Standard Model**



- Standard Model (SM) of elementary particles is a very successful theory
- precise predictions, verified by several experiments over many orders production rate
- discovery of the higgs boson completed the SM

What's the problem?

- no explanations of dark matter
- no explanation of the origin of matter-anti-matter asymmetry
- no unification of the forces
- high-levels of fine tuning needed to avoid quadratic divergences of higgs mass corrections







- extension of the Standard Model: introduction of a new symmetry
- relating spin ½ matter particles (fermions) ⇔ spin 1 particles (bosons)
- SUSY partners are heavier than SM partners  $\rightarrow$  broken symmetry
- solves hierarchy (and other) problems of the SM





solves hierarchy problems of the SM

ightarrow stabilises the higgs mass from quadratically divergent loop corrections





Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 4









Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 5



- new quantum number: R-parity R= (-1)<sup>B+L+2S</sup> = +1 (-1) SM (SUSY) particles
- if R-parity is conserved, lightest SUSY particles (LSP) is stable
- in many SUSY models, LSP is commonly lightest neutralino  $\chi_1$ 
  - → dark matter candidate







Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 7

# **Searching for Supersymmetry**

#### How to search for SUSY ?

A typical SUSY model involves:

- many sparticles with different masses
- different possibilities for each to decay



example for SUSY model e.g. CMSSM/MSUGRA

"typical" SUSY decay chain at the LHC



# **Searching for Supersymmetry**

How to search for SUSY ?

✓ focus on the process of interest



squarks decay into chargino  $\rightarrow$  neutralino



# **Searching for Supersymmetry**

#### How to search for SUSY ?

- focus on the process of interest
- study a specific decay chain using simplified models
- simple and broad approach for SUSY searches
- small number of sparticles
- assumed BR usually 100%
- decay described by masses and cross sections







#### Where do we start?

SUSY search strategy is driven by the cross-section and luminosity





Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 11



early analyses:

dominated by inclusive searches for strongly produced SUSY particles (gluino and squarks) due to high production cross sections

- many SUSY models e.g. MSUGRA/ CMSSM dominated by strong production
- final states depend on the decays of squark/gluino: jet + E<sub>T</sub><sup>miss</sup> + leptons





With increasing luminosity: access to rare production channels





With increasing luminosity: access to rare production channels





- search strategy designed to cover this broad spectra of different SUSY models
- for every search: signal regions are optimized individually based on the variety of the models/decay chains





- search strategy designed to cover this broad spectra of different SUSY models
- for every search: signal regions are optimized individually based on the variety of the models/decay chains

I will only discuss the latest results using full 2012 data (20fb<sup>-1</sup>), but unfortunately I am not able to cover all searches CMS and ATLAS have performed in the quest for SUSY!

You can find a summary of all SUSY results + links to the analysis under:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

https://twiki.cern.ch/twiki/bin/view/AtlasPublicSupersymmetryPublicResults









#### Squark-gluino searches



squark/gluino production with neutralino LSP

squark/gluino production with gravitino LSP

very high cross sections for strongly produced SUSY particles at the LHC

 $\rightarrow$  large yield even in small datasets

 interpreted within many different SUSY models: constrained models (mSUGRA/CMSSM, GMSB, pMSSM, mUED), simplified models

| ATLAS searches                                                                                                                                            |                                                                   | C | CMS searches                                                                               |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------|------------|
| 0-leptons + 2-6 jets+ $E_T^{miss}$<br>0-leptons + 7-10 jets+ $E_T^{miss}$<br>1-2-leptons + 3-6 jets + $E_T^{miss}$<br>2-leptons + 2-6 jets + $E_T^{miss}$ | ATLAS-CONF-2013-047<br>arxiv 1308.1841<br>ATLAS-CONF-2013-062     | 2 | 2-3, ≥ 4 jets + 0,1, 2, 3, ≥4 b-jets + E <sub>T</sub> <sup>miss</sup><br>(α <sub>T</sub> ) | SUS-12-028 |
| (Razor)<br>2-leptons SS + 0-3 b-jets + E <sub>T</sub> <sup>miss</sup><br>1-2 taus + jets+ E <sub>T</sub> <sup>miss</sup>                                  | ATLAS-CONF-2013-089<br>ATLAS-CONF-2013-007<br>ATLAS-CONF-2013-026 | 3 | 3-5, 6-7, ≥ 8jets + E <sub>T</sub> <sup>miss</sup>                                         | SUS-13-012 |



# Squark-gluino searches



- assume 100% BR for the stated process in the simplified model grids
- weaker limits with reduced number of squarks kinematically available e.g. (u<sub>L</sub>, u<sub>R</sub>) : m(light squark) < 500 GeV</li>
- limits for massless LSP: m(squark) < 850 GeV, m (gluino) < 1.2 TeV</li>
- computed excluded cross section for each model in parameter space



# Squark-gluino searches: mSUGRA – pMSSM models

#### mSUGRA/CMSSM grid

#### pMSSM grid



higgs-aware: accommodates a lightest neutral scalar Higgs boson mass of 125 GeV simplified pMSSM scenarios with only strong production of gluinos and first- and second-generation squarks (of common mass)



# Squark-gluino searches: mSUGRA models





# Squark-gluino searches: pMSSM models









# Natural SUSY searches – gluino mediated stops/sbottoms





- targeting natural SUSY spectra with light stops and sbottoms ٠
- light gluino can be produced in pairs and decay through (on-shell or off-shell) • stops/ sbottoms
- better controlled SM backgrounds via b-tagging and special topology signatures (e.g. ٠ many jets) provide higher sensitivity

| ATLAS searches                                                                                                              |                                                                   | CMS searches                                                                                                                                                                                                                                                                |                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 0-leptons + 7-≥ 10 jets+ $E_T^{miss}$<br>0-1-lepton + ≥ 3 b-jets + $E_T^{miss}$<br>2-leptons SS + 0-3 b-jets + $E_T^{miss}$ | ATLAS-CONF-2013-054<br>ATLAS-CONF-2013-061<br>ATLAS-CONF-2013-007 | 0 - 1 -lepton+ b-jets + $E_T^{miss}$ (Razor)<br>3-5, 6-7, $\geq$ 8jets + $E_T^{miss}$ ( $H_T$ )<br>1-lepton + b-jets + 2-3, $\geq$ 4 jets+ $E_T^{miss}$<br>3-lepton + b-jets + $E_T^{miss}$<br>2-leptons SS + b-jets + $E_T^{miss}$<br>2-leptons OS + b-jets + $E_T^{miss}$ | SUS-13-004<br>SUS-12-024<br>SUS-13-007<br>SUS-13-008<br>SUS-13-013<br>SUS-13-016 |



## **Gluino mediated sbottom-stop production**



no exclusion for m(LSP) > 750 GeV strongest limit: gluino masses < 1375 GeV for massless LSP



no exclusion for m(LSP) > 700 GeV strongest limit: gluino masses < 1400 GeV for massless LSP



# 3<sup>rd</sup> generation direct production

sbottom searches

stop searches



- large spectrum of possible stops and sbottoms decays
- sensitivity is dependent on sparticle mass differences and decay channels: final states include (b)-jets, E<sub>T</sub><sup>miss</sup> and (often) leptons
- effort so far: concentrated on simplified models with 100% BRs to chosen final state

|   | ATLAS searches                                                                                                                                                               | CMS searches                                                                                                             |                          |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|
| - | 0-leptons + 2 b-jets+ $E_T^{miss}$ arXiv:1308.2631<br>0-leptons + ≥3 b-jets+ $E_T^{miss}$ ATLAS-CONF-2013-061<br>1-leptons + 4 (2 b-) jets+ $E_T^{miss}$ ATLAS-CONF-2013-037 | 2-lepton (SS) + (b-) jets+ E <sub>T</sub> <sup>miss</sup>                                                                | SUS-13-013               |
| _ | 2-leptons (SS) + 3 (1 b-) jets+ E <sub>T</sub> <sup>miss</sup><br>ATLAS-CONF-2013-007                                                                                        |                                                                                                                          |                          |
| - | 0-lepton + 6 (2 b-) jets+ E <sub>T</sub> <sup>miss</sup> ATLAS-CONF-2013-024<br>0-lep. + charm/ mono-jet+ E <sub>T</sub> <sup>miss</sup><br>ATLAS-CONF-2013-068              | 0 - 1 -lepton+ b-jets + E <sub>T</sub> <sup>miss</sup> (Razor)<br>1-lepton 4 (1 b-) jets+ E <sub>T</sub> <sup>miss</sup> | SUS-13-004<br>SUS-13-011 |
| _ | 2-leptons + (1, 2) b-jets+ E <sub>T</sub> <sup>miss</sup><br>ATLAS-CONF-2013-048/065<br>Z(II) + b-jets+ jets+ E <sub>T</sub> <sup>miss</sup> ATLAS-CONF-2013-025             | Stop 2 decays via higgs:<br>1-2 lepton + ≥ 4-5 (3- ≥ 4 b-) jets                                                          | SUS-13-014               |

Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 26



- exclusion regions depend on decay chain and mass splitting e.g. between chargino LSP
- for massless LSP: sbottoms up to 650 GeV are excluded
- best limits for LSP ~270 GeV





- multiple searches possible targeting different stop/chargino/neutralino mass hierarchies and decay scenarios
- decays depend on the stop mass and sparticle mass differences
- searches focus on simplified models with 100% BR on final state



\* LEP: chargino mass limit at about 100 GeV

























# **Electroweak SUSY production**



- may dominate if squarks/gluinos are heavy and neutralinos/charginos are light
- electroweak SUSY particle production (  $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$   $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}$ ,  $\tilde{\ell}$   $\tilde{\ell}$  ....)
- occurs via intermediate W, Drell-Yan processes or intermediate sleptons
- search strategy depends on the slepton masses, gauge mixture and masses of charginos/ neutralinos
- characteristic: multi-lepton signatures with low hadronic activity → low SM background

| ATLAS searches                                                                                                                                                                                      |                                                                                          | CMS searches                                                                                                                                                                                     |                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| 2-leptons (e, μ) + E <sub>T</sub> <sup>miss</sup><br>3-leptons (e, μ) + E <sub>T</sub> <sup>miss</sup><br>≥ 4-leptons + E <sub>T</sub> <sup>miss</sup><br>≥ 2-taus + E <sub>T</sub> <sup>miss</sup> | ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-028 | 2-lepton + $E_T^{miss}$<br>3-lepton + SS di-lepton+ $E_T^{miss}$<br>3-lepton (e, $\mu$ ) + $E_T^{miss}$<br>2-lepton + 2 jet + $E_T^{miss}$                                                       | SUS-13-006<br>SUS-13-006<br>SUS-13-006<br>SUS-13-006 |  |
| WH (bb):<br>1-lepton + 2 b-jets (H) + E <sub>T</sub> <sup>miss</sup>                                                                                                                                | ATLAS-CONF-2013-093                                                                      | WH(bb, WW, ZZ, ττ ):<br>1-lepton + 2 b-jets + E <sub>T</sub> <sup>miss</sup><br>2-lepton SS + 2 -3-jets + E <sub>T</sub> <sup>miss</sup><br>3-lepton + 2 b-jets + E <sub>T</sub> <sup>miss</sup> | SUS-13-017<br>SUS-13-017<br>SUS-13-017               |  |



# **EW SUSY production – chargino-neutralino scenario**



Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 36
# **EW SUSY production: Higgs final states**







## **EW SUSY production GMSB and slepton scenario**



Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 38

## Long lived particles (LLP) and R-parity violation

onger lifetime

|              | (1) Slow, large dE/dx  | ~ 1000 mm |
|--------------|------------------------|-----------|
| charge flip  | (2) Slow, stopped      | 1000 1111 |
| stonned 5    | (3) Disappearing track | ~ 100 mm  |
| 3100000      | (4) Kinked track       |           |
| 4            | (5) displaced track    | ~ 10 mm   |
| ID Calo Muon |                        |           |

ATLAS and CMS look at different RPV and longlived signatures in different channels trying to cover a wide range of lifetimes e.g. disappearing tracks, R-hadrons, displaced vertex,..

orompt<sub>.</sub>RPV

ong-lived

- massive long-lived particles can originate from:
- mass degeneracy e.g. small charginoneutralino mass difference
- heavy mediator sparticles e.g. Split
   SUSY (suppressed gluino decay)
- R-parity violating terms (weak couplings)

| ATLAS searches                                                                                                                                                                                                                                            | CMS searches                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 lep. + ≥ 7 (0-2 b-) jets + $E_T^{miss}$ ATLAS-CONF-2013-091<br>0 lep. + ≥ 6-10 (0-2 b-) jets + $E_T^{miss}$ arXiv 1308.1841<br>4 lep. + $E_T^{miss}$ ATLAS-CONF-2013-036<br>heavy resonances to eµ,µT, eT PLB 723 (2013) 15                             | 1 lepton + 6-8 (1-5 b-) jets + $E_T^{miss}$ SUS -12-0154 lep. + $E_T^{miss}$ SUS -13-0103-4 leptons + b-jet+ $E_T^{miss}$ arXiv: 1306.66432-leptons SS + b-jets + $E_T^{miss}$ SUS-13-013≥3 leptons + b-jet + $E_T^{miss}$ SUS-12-027 |
| disappearing tracks (long-lived charginos)<br>arXiv: 1310.3675<br>stopped gluinos or squark R-hadrons (27.9 fb <sup>-1</sup> )<br>arXiv: 1310.6584<br>long-lived sleptons e.g. GMSB<br>displaced vertex<br>non-pointing photons (7 TeV)<br>PRD 88, 012001 |                                                                                                                                                                                                                                       |

## Long lived particles (LLP)

#### disappearing track

## long-lived gluino R-hadrons

displaced vertex

AMSB model where chargino mass is nearly degenerate with LSP mass



R-hadrons (e.g. in Split-SUSY) can stuck in the detector and decay later

use empty LHC bunches to search for hadronic calorimeter activities search for heavy particles with multi-track, high mass vertex containing high  $p_T$ 













Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 40

# Long lived particles (LLP)

#### disappearing track

#### long-lived gluino R-hadrons

displaced vertex





# **R-parity violation (RPV)**



- ATLAS and CMS have developed a broad SUSY program
- detailed and thorough searches, covered wide ranges of signatures
- main focus on strong production, natural SUSY, RPV and long-lived SUSY searches
- effort to cover maximum area of the SUSY parameter space use simplified models, pheno models and full models
- no sign of SUSY found yet, but ....
  - ... we will start with LHC run 2 soon!
- high energy running will significantly increase our sensitivity to many SUSY scenarios

## Looking forward to next exciting years!



Thank you for your attention!



## BACKUP



Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 45

## **Summary of exclusion limits**



DES

## Summary of exclusion limits of ATLAS SUSY searches

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$   $\sqrt{s} = 7, 8 \text{ TeV}$ 

|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e, μ, τ, γ                                                                                                                                                                            | Jets                                                                                                                         | E <sup>miss</sup>                                                  | ∫£ dt[fb                                                                            | <sup>-1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                                | $\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{g}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell/\ell_{V}/w) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (hion NLSP)} \\ \text{GGM (hion NLSP)} \\ \text{GGM (hiogsino NLSP)} \\ \text{GGM (hiogsino NLSP)} \\ \text{Gravitino LSP} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{matrix} 0 \\ 1 & e, \mu \\ 0 \\ 0 \\ 1 & e, \mu \\ 2 & e, \mu \\ 2 & e, \mu \\ 1.2 & \tau \\ 2 & \gamma \\ 1 & e, \mu + \gamma \\ \gamma \\ 2 & e, \mu (Z) \\ 0 \end{matrix}$ | 2-6 jets<br>3-6 jets<br>7-10 jets<br>2-6 jets<br>2-6 jets<br>3-6 jets<br>0-3 jets<br>0-2 jets<br>1 b<br>0-3 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                        | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-062<br>1308.1841<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-047<br>ATLAS-CONF-2013-062<br>ATLAS-CONF-2013-068<br>1208.4688<br>ATLAS-CONF-2013-026<br>1209.0753<br>ATLAS-CONF-2012-144<br>1211.1167<br>ATLAS-CONF-2012-152<br>ATLAS-CONF-2012-152<br>ATLAS-CONF-2012-147 |
| 3 <sup>rd</sup> gen.<br>ĝ med.                    | $\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0-1 e,μ<br>0-1 e,μ                                                                                                                                                          | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                               | Yes<br>Yes<br>Yes<br>Yes                                           | 20.1<br>20.3<br>20.1<br>20.1                                                        | Î         Î         TEV         m(k1) <<600 GeV           Î         Î         TEV         m(k1) <<350 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATLAS-CONF-2013-061<br>1308.1841<br>ATLAS-CONF-2013-061<br>ATLAS-CONF-2013-061                                                                                                                                                                                                                                |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{array}{c} \tilde{J}_{1}\tilde{J}_{1}\tilde{J}_{1}\tilde{J}_{2}\tilde{J}_{2}\to\delta\tilde{x}_{1}^{0}\\ \tilde{h}_{1}\tilde{h}_{1}\tilde{J}_{1}\tilde{J}_{1}\to\delta\tilde{x}_{1}^{1}\\ \tilde{h}_{1}\tilde{x}_{1}(\text{light}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{light}),\tilde{x}_{1}\to\mathcal{W}\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{medium}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}\tilde{x}_{1}(\text{measure}),\tilde{x}_{1}\to\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{2}\tilde{x}_{1}\tilde{x}_{2}\to\tilde{x}_{1}^{0}+Z \end{array} \right)$ | $\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$                       | 2 b<br>0-3 b<br>1-2 b<br>0-2 jets<br>2 jets<br>2 b<br>1 b<br>2 b<br>1 b<br>2 b<br>1 b<br>1 b<br>1 b<br>1 b                   | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.1<br>20.7<br>4.7<br>20.3<br>20.3<br>20.1<br>20.7<br>20.5<br>20.3<br>20.7<br>20.7 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1308.2631<br>ATLAS-CONF-2013-007<br>1208.4305, 1209.2102<br>ATLAS-CONF-2013-065<br>1308.2631<br>ATLAS-CONF-2013-065<br>ATLAS-CONF-2013-024<br>ATLAS-CONF-2013-024<br>ATLAS-CONF-2013-025<br>ATLAS-CONF-2013-025                                                                                               |
| EW<br>direct                                      | $ \begin{array}{l} \tilde{\ell}_{L}_{R}\tilde{\ell}_{L,R},\tilde{\ell}\rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}\rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+}\rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{\ell}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{\ell}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\rightarrow \tilde{\ell}_{1}\nu\tilde{\chi}_{\ell}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{\ell}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0}\rightarrow \tilde{\chi}_{1}^{+}\tilde{\ell}_{0}^{0}\tilde{\chi}_{1}^{0}\tilde{L}\tilde{\chi}_{1}^{0} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                     | 2 e, μ<br>2 e, μ<br>2 τ<br>3 e, μ<br>3 e, μ<br>1 e, μ                                                                                                                                 | 0<br>0<br>-<br>0<br>2 b                                                                                                      | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                             | 20.3<br>20.3<br>20.7<br>20.7<br>20.7<br>20.7<br>20.3                                | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-049<br>ATLAS-CONF-2013-028<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-035<br>ATLAS-CONF-2013-093                                                                                                                                                                        |
| Long-lived<br>particles                           | $\begin{array}{l} \text{Direct} \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \text{ prod., long-lived } \tilde{\chi}_{1}^{+} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\cdot \\ \text{GMSB, } \tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_{1}^{0} \\ \tilde{q} \tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu \text{ (RPV)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Disapp. trk<br>0<br>$e, \mu$ ) 1-2 $\mu$<br>2 $\gamma$<br>1 $\mu$ , displ. vtx                                                                                                        | 1 jet<br>1-5 jets<br>-<br>-                                                                                                  | Yes<br>Yes<br>-<br>Yes<br>-                                        | 20.3<br>22.9<br>15.9<br>4.7<br>20.3                                                 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATLAS-CONF-2013-069<br>ATLAS-CONF-2013-057<br>ATLAS-CONF-2013-058<br>1304.6310<br>ATLAS-CONF-2013-092                                                                                                                                                                                                         |
| RPV                                               | $ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_\tau + X, \ \tilde{v}_\tau \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_\tau + X, \ \tilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \ \tilde{\chi}_1^+ \rightarrow \mathcal{W} \tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{\iota} \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \ \tilde{\chi}_1^+ \rightarrow \mathcal{W} \tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{\iota} \\ \tilde{\chi}_1^- \tilde{\chi}_1^-, \ \tilde{\chi}_1^- \rightarrow \mathcal{W} \tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \rightarrow \tau \tilde{\tau} \tilde{v}_e, e \tau \tilde{v} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{t}_1 t, \ \tilde{t}_1 \rightarrow bs \end{array} $                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \psi_{e} \\ 4 \ e, \mu \\ \psi_{\tau} \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array} $                  | 7 jets<br>-<br>-<br>6-7 jets<br>0-3 <i>b</i>                                                                                 | -<br>Yes<br>Yes<br>Yes<br>-<br>Yes                                 | 4.6<br>4.7<br>20.7<br>20.7<br>20.3<br>20.7                                          | \$\vec{r}\$         1.61 TeV $\lambda_{11}^{c}=0.10, \lambda_{132}=0.05$ \$\vec{r}\$         1.1 TeV $\lambda_{11}^{c}=0.10, \lambda_{132}=0.05$ \$\vec{r}\$         1.1 TeV $\lambda_{11}^{c}=0.10, \lambda_{132}=0.05$ \$\vec{r}\$         1.2 TeV         m(\vec{r}{r})=m(\vec{r}), cr_{15}=r_{15}           \$\vec{r}\$         760 GeV         m(\vec{r}{r})^{1})>300 GeV, \lambda_{121}>0           \$\vec{r}\$         350 GeV         m(\vec{r}{r})^{1})>300 GeV, \lambda_{133}>0           \$\vec{r}\$         880 GeV         BR(r)=BR(b)=BR(c)=0% | 1212.1272<br>1212.1272<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-036<br>ATLAS-CONF-2013-0391<br>ATLAS-CONF-2013-091<br>ATLAS-CONF-2013-007                                                                                                                                                                    |
| Other                                             | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$<br>Scalar gluon pair, sgluon $\rightarrow t\bar{t}$<br>WIMP interaction (D5, Dirac $\chi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>2 e,μ(SS)<br>0                                                                                                                                                                   | 4 jets<br>1 <i>b</i><br>mono-jet                                                                                             | -<br>Yes<br>Yes                                                    | 4.6<br>14.3<br>10.5                                                                 | sgluon         100-287 GeV         incl. limit from 1110.2693           sgluon         800 GeV         m(χ)<80 GeV, limit of <687 GeV for D8                                                                                                                                                                                                                                                                                                                                                                                                                 | 1210.4826<br>ATLAS-CONF-2013-051<br>ATLAS-CONF-2012-147                                                                                                                                                                                                                                                       |
|                                                   | $\sqrt{s} = 7 \text{ TeV}$<br>full data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | √s = 8 TeV<br>partial data                                                                                                                                                            | √s =<br>full                                                                                                                 | 8 TeV<br>data                                                      |                                                                                     | 10 <sup>-1</sup> 1 Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 $\sigma$  theoretical signal cross section uncertainty.



## Summary of exclusion limits of CMS SUSY searches



## Summary of exclusion limits of CMS SUSY searches





95% CL exclusion limits are set on various models:





## Outlook

What is next?

- increase sensitivity to difficult SUSY scenarios
- explore new channels, probe more parameter space
- prepare for  $\sqrt{s}$  = 13 TeV, LHC run-2 in 2016/2017





## ATL-PHYS-2013-011

- high-energy LHC run will significantly increase the sensitivity to many SUSY scenarios e.g. expect factor ~10 for 600 GeV stops and factor ~2 for 2 TeV gluinos
  - $\rightarrow$  improvement for 300 fb<sup>-1</sup> and

3000 fb<sup>-1</sup> at  $\sqrt{s} = 14$  TeV





## **SUSY limits**





Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 53

## 3<sup>rd</sup> generation direct production





Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 54

## 3<sup>rd</sup> generation direct production





## Conclusions

## Thank you for your attention!





Janet Dietrich | SUSY searches with ATLAS and CMS | Epiphany 2014 | Page 56

**3-level trigger** Rate 40 MHz → ~400 Hz

> 44m long 25m diameter

Inner Detector Silicon pixels & strips + TRT straws

Precise tracking and vertexing, electron/pion separation p resolution  $\sigma/p_{T} \sim 3.8 \times 10^{-4} p_{T}$  (GeV)  $\oplus$  0.015

**ECAL** Pb-LAr accordion Electron/photon id & measurement E resolution  $\sigma/E \sim 10\%/\sqrt{E}$ 

Muon Spectrometer Air-core toroids with gas-based muon chambers Muon measurement p resolution  $\sigma/p < 10\%$  up to p ~ 1 TeV

HCAL

Fe/scintillator tiles (central), Cu/Q-LAr (fwd) Measurement of jets & missing  $E_T$ E resolution  $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$ 



## **Experimental setup: Luminosity and pileup**

~ 22 fb<sup>-1</sup> collected at  $\sqrt{s}$  = 8 TeV ~ 5 fb<sup>-1</sup> collected at  $\sqrt{s}$  = 7 TeV

with ~ 90% of the delivered data being good for physics

Most results presented here use the full 8 TeV dataset



Mean Number of Interactions per Crossing



Large luminosity results in large pileup (number of interactions per bunch crossing)

Pileup suppression strategies have been carefully developed





understanding and modeling of the SM background is important for every SUSY search





- MC statistics: statistical uncertainties from the limited number of simulated events in the SRs and CRs
- JET: propagation of the jet energy scale calibration (JES) and resolution (JER) uncertainties; JES uncertainties do propagate to E<sub>T</sub><sup>miss</sup>
- LEPTON: lepton reconstruction, identification and trigger efficiencies, energy and momentum measurements; lepton energy scale uncertainties propagate to E<sub>T</sub><sup>miss</sup>
- B-tagging: uncertainties on the b-jet identification efficiency and charm and light-flavor jet rejection factors
- Luminosity: 2.8 % derived from a preliminary calibration of the luminosity scale from beam-separation scans
- Soft term: additional uncertainties on E<sub>T</sub><sup>miss</sup> associated with the energy deposits not assigned to any object
- Theory: generator modeling uncertainties obtained by comparing results from different MC generators, parton shower modeling (PS), initial and final state radiation (ISR/FSR)
- Signal: taken from an envelope of cross-section predictions using different PDF sets and factorization and normalization scales



# **Flavor tagging**

## b-tagging

Advanced algorithm based on multivariate technique.

- MV1: a Neural Network based tagger that combines information from transverse and longitudinal impact parameter (IP) significance, secondary vertex, geometry of decay chain.
- efficiency: 70% with 0.7% light flavour and 20% charm jets.

## c-tagging

Using multivariate techniques to combine information from impact parameters of displaced vertices within the jet. Operating points:

- Medium
  - 20% c-tagging efficiency
  - Rejection factors: 5 b-jets, 140 light-jets, 10 tau-jets
- Loose
  - 95% c-tagging efficiency
  - Rejection factors: 2 b-jets



- Hadronically decaying tau reconstruction
- Reconstruction: seeded by baseline jets
- Track associated: core and isolation tracks
- Information from tracking and calorimeters combined to derive identification variables
- Four-momentum from clusters in core cone + TES correction





## Squark-gluino production pMSSM grid

Expected limit Yellow band ±1σ experimental uncertainties

# — Red line: Observed limit — Dashed lines ±1σ signal theory uncertainties



#### Signal uncertainties considered

- In yellow band
- Experimental uncertainties
- ISR uncertainty on signal MC
- Up to 30% in some regions with small  $\Delta m$ In red dashed lines
- Cross-section uncertainties (PDF, renormalisation/factorization scales)



# **SUSY limits**

- compute the 95% CL model independent limits on  $\sigma_{vis} = \sigma x A x \epsilon$
- compute 95% CL model dependent exclusion curves on  $\sigma_{SUSY}$  and sparticle masses





#### **SUSY variables**

scalar sum of all jets  $p_T$  + scalar some of all leptons  $p_T$ 

effective mass

cotransverse mass of two leptons

cotransverse mass of 2b -jets

$$m_{\rm CT}^2 = \left(E_{\rm T}^{b_1} + E_{\rm T}^{b_2}\right)^2 - \left|\mathbf{p}_{\rm T}^{b_1} - \mathbf{p}_{\rm T}^{b_2}\right|^2$$
$$\approx 2p_{\rm T}^{b_1} p_{\rm T}^{b_2} (1 + \cos \Delta \phi_{bb})$$

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\rm lep}E_{\rm T}^{\rm miss} - 2\mathbf{p}_{\rm T}^{\rm lep}\cdot\mathbf{p}_{\rm T}^{\rm miss}}$ 

$$m_{\rm CT}^{\rm max} \approx \frac{m_{\rm heavy}^2 - m_{\rm invisible}^2}{m_{\rm heavy}}$$



 $H_{T} = \sum p_{T,iets} + \sum p_{T,leptons}$ 

 $M_{eff} = H_T + E_T^{miss}$ 

 $m_{cr}(lep1, lep2) = [E_{r}(lep1) + E_{r}(lep2)]^{2} - [p_{r}(lep1) + p_{r}(lep2)]^{2}$ 

## How to search for SUSY?

#### **SUSY variables**

stransverse mass of two leptons and  $E_{T}^{miss}$ 

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[ \max\left( m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

$$E_{\rm T}^{\rm miss, rel.} = \begin{cases} E_{\rm T}^{\rm miss} & \text{if } \Delta \phi_{\ell,j} \ge \pi/2\\ E_{\rm T}^{\rm miss} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$$

#### $\boldsymbol{\alpha}_{T}$

= variable to reject multi-jet events efficiently without significant  $E_t^{miss}$  or with transverse energy mismeasurements; for a di-jet event with the less energetic jet:  $E_T j^2$  and the transverse mass of the di-jet system:

$$\begin{split} \alpha_{\rm T} &= \frac{E_{\rm T}^{j_2}}{M_{\rm T}} \,, \\ M_{\rm T} &= \sqrt{\left(\sum_{i=1}^2 E_{\rm T}^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_x^{j_i}\right)^2 - \left(\sum_{i=1}^2 p_y^{j_i}\right)^2} \end{split}$$

for back-to-back jets with  $E_T j^2$  =  $E_T j^1 ~\alpha_T$  = 0.5

#### **Razor variables**

• looks at the rest frame of the heavy SUSY particles (R-frame)

 $\rightarrow$  exploit the symmetry in the visible portion of pair-produced sparticles decays

- decay products of a single sparticle decay are grouped in a mega-jet
- = symmetric chains in the rest frame of the sparticles
- in the R-frame each sparticle has about the same mass m<sub>heavy</sub>
- energy of the mega jets  $E_1$ ,  $E_2$   $E_1 = E_2 = \frac{m_{\text{Heavy}}^2 m_{\text{LSP}}^2}{2 \times m_{\text{Heavy}}}$

• characteristic mass  $M_R = 2 \times E_1 = 2 \times E_2$ 

• in the lab frame:  $M'_R = \sqrt{(j_{1,E} + j_{2,E})^2 - (j_{1,z} + j_{2,z})^2}$ 

with: j  $_{i,E}$  = energy mom. of mega-jet, j  $_{i,z}$  = longitud. momentum

• transverse information of the system  $M_{\mathrm{T}}^{R} = \left[\frac{1}{2} \times |\mathbf{E}_{\mathbf{T}}^{\mathrm{miss}}| \times (|\mathbf{j}_{1,\mathbf{T}}| + |\mathbf{j}_{2,\mathbf{T}}|) - \frac{1}{2} \times \mathbf{E}_{\mathbf{T}}^{\mathrm{miss}} \cdot (\mathbf{j}_{1,\mathbf{T}} + \mathbf{j}_{2,\mathbf{T}})\right]^{1/2}$ • Razor variable: R = M\_{\mathrm{T}}^{R} / M\_{\mathrm{R}}^{\*}

SM → small values, SUSY between 0-1

## **Natural SUSY**

Expect light stop, sbottom, not-too heavy gluino, and light higgsinos (gauginos)





## **Squark-gluino production**

SUS-13-012







## LLP – disappearing track



Many SUSY model e.g. AMSB have almost mass degenerate chargino and LSP  $\rightarrow$  long-lived chargino

Chargino travels into detector before decaying to soft pion + LSP → disappearing track

Trigger on ISR jet Look for isolated, high  $p_{\tau}$  tracks with < 5 TRT hits



Background track p<sub>T</sub> shape taken from data Signal + background template fit for candidate tracks

## No significant excess observed



## **μ + displaced vertrex ATLAS-CONF-2013-092**



Consider the LSP to be long-lived, decaying to a muon and jets Dedicated reconstruction of tracks and vertices

Trigger with one high- $p_{T}$  muon

Search for a displaced vertex (DV) within r < 180 mm and |z| < 300 mm  $m_{DV} > 10$  GeV and > 4 tracks



Dominating background from hadronic interactions with gas molecules (outside beampipe)

Usually low mass, but random track crossing can give high mass



Model m<sub>DV</sub> with jettriggered events

Random track combination background negligible

Expected 0.02 ± 0.02 events Observed 0




# Long-lived gluino R-hadrons

A beam-halo candidate event during an unpaired bunch crossing in data.



A cosmic ray muon candidate event during an empty bunch crossing in data



# A candidate event display from 2011 data passing all selections





energy deposits in TileCal cells fraction of red area indicates the amount of energy in the cell

histogram of total energy in projective TileCal towers

Muon segments are drawn but not reconstructed



## **R-parity violation (RPV)**

RPV stop searches (arXiv: 1306.6643)





## **MSUGRA = Gravity-Mediated Supersymmetry Breaking**

= most studied scenario is the 5 parameter mSUGRA model

| M <sub>0</sub> :<br>M <sub>1/2</sub> : | common boson mass at GUT scale<br>common fermion mass at GUT scale |
|----------------------------------------|--------------------------------------------------------------------|
| tan β:                                 | ratio of higgs vacuum expectation values                           |
| A <sub>0</sub> :                       | common GUT trilinear coupling                                      |
| μ:                                     | sign of Higgs potential parameter                                  |





- Gauge Mediated Supersymmetry Breaking is method of communicating supersymmetry breaking to the supersymmetric Standard Model through the Standard Model's gauge interactions. Typically a hidden sector breaks supersymmetry and communicates it to massive messenger fields that are charged under the Standard Model. These messenger fields induce a gaugino mass at one loop and then this is transmitted on to the scalar superpartners at two loops.
- the maximum Higg's boson mass predicted is just 121.5GeV → with the Higgs being discovered at 125GeV - this has likely been disproved



#### GMSB

Gauge mediated SUSY breaking can be understood in terms of loop effects in a renormalizable framework (in contrast to mSUGRA).



Parameters (general model has 124):

- $\rightarrow$  A: Breaking scale
- → M: Mass scale of the messengers
- $\rightarrow$  tan $\beta$ : Ratio of Higgs vacuum expectation values
- → N: Number of messenger chiral supermultiplets
- $\rightarrow$  sign(µ): Sign of the Higgs mass parameter
- →  $C_{grav}$ : Scale factor of the Gravitino mass → lifetime of NLSP



# AMSB = Anomaly Mediated Supersymmetry Breaking

- Characteristic near-• degeneracy of  $\chi_1^0$ (LSP) and  $\chi_1^+$ masses
- $\Delta m < m(\pi)$ ٠
  - Long lived  $\chi_1^+$
  - 'cannonball'
- $\Delta m > 1 \text{ GeV}$ ٠
  - multi-hadron decay

Examine model with  $c\tau \Rightarrow$  vertexing

Gravitational Interaction Sequestered Sector Visible Sector Curled up dimension

- Our Model:
  - RPC
  - tan $\beta = 10$
  - $m_{3/2} = 36 \text{ TeV}$
  - $m_0 = 500 \text{ GeV}$
  - $\mu$  +ve
- Giving:
  - $m(\chi^+) = 99.0 \text{ GeV}$
  - $m(\chi^0) = 98.4 \text{ GeV}$
  - $-\Delta m = 631 \text{ MeV}$
  - $-c\tau = 360 \,\mu m$



# **SUSY limits**



