Rare Decays at LHCb

Arantza Oyanguren (IFIC – U. Valencia)

On behalf of the LHCb collaboration

XX Cracow EPIPHANY Conference, January 2014

HEP .: HEPNAMES .: INSTITUTIONS .: CONFERENCES .: JOBS .: EXPERIMENTS .: JOURNALS .: HELP

HEP Search	
High-Energy Physics Literature Database	
Use "find " for SPIRES-style	
search (other tips)	Easy Search
find collaboration LHCb and subject RARE DECAYS Brief format	Search Advanced Search
nnd Phys. Rev. Lett., 105" :: more	
$B \rightarrow K^* \mu \mu$, Phys. Rev. Lett. 08 (2013) 117, [arXiv:1308.1707]	(1fb ⁻¹)
B ⁺ → K ⁺ μμ, Phys. Rev. Lett. 111 (2013) 151801, [arXiv:1308.1340]	(1fb ⁻¹)
ψ(4160), Phys. Rev. Lett. 111 (2013) 112003, [arXiv:1307.7595]	(3fb ⁻¹)
B _{s/d} →μμ, Phys. Rev. Lett. 111 (2013) 101805, [arXiv:1307.5024]	(3fb ⁻¹)
B _{s/d} →μe, Phys.Rev. Lett. 111 (2013) 141801, [arXiv:1307.4889]	(1fb ⁻¹)
Λ_b→Λμμ, Phys. Lett. B725 (2013) 25, [arXiv:1306.2577]	(1fb ⁻¹)
D→μμ , Phys. Lett. B725 (2013) 15, [arXiv:1305.5059]	(0.9fb ⁻¹)
B _s →φμμ, JHEP 1307 (2013) 084, [arXiv:1305.2168]	(1fb ⁻¹)
Β →Κ*μμ, JHEP 1308 (2013) 131, [arXiv:1304.6325]	(1fb ⁻¹)
τ→3μ, т→рµµ, Phys. Lett. B724 (2013), [arXiv:1304.4518]	(1fb ⁻¹)
B →K*ee, JHEP 05 (2013) 159, [arXiv:1304.3035]	(1fb ⁻¹)
B→4μ, Phys. Rev. Lett. 110 (2013) 211801, [arXiv:1303.1092]	(1fb ⁻¹)
B→K*μμ, Phys. Rev. Lett. 110 (2013) 031801, [arXiv:1210.4492]	(1fb ⁻¹)
B⁺→π⁺μμ, JHEP 12 (2012) 125, [arXiv:1210.2645]	(1fb ⁻¹)
K _s →μμ, JHEP 01 (2013) 090, [arXiv:1209.4029]	(1fb ⁻¹)
Β→Κ^(*)μμ, JHEP 07 (2012) 133, [arXiv:1205.3422]	(1fb ⁻¹)
B→K*γ/B _s →φγ, Nucl. Phys. B 867 (2012) 118, [arXiv:1209.0313]	(1fb ⁻¹)
B⁺→Xμ⁻μ⁻ , Phys. Rev. D 85 (2012) 112004, [arXiv:1201.5600]	(0.41fb ⁻¹)

XX Cracow EPIPHANY

<u>Outline</u>

- Rare B decays
- The LHCb experiment
- Leptonic decays: $B_{s/d} \rightarrow \mu^+ \mu^-$
- Lepton Flavour Violation: $B_{s/d} \rightarrow e^+ \mu^-$
- Semi(di)leptonic decays: $B_d \rightarrow K^{*0} \mu^+ \mu^-$
- Radiative decays: $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$
- Conclusions

Rare B decays

b→*s* transitions are Flavor Changing Neutral Currents (FCNCs), forbidden in the Standard Model (SM) at tree level
 → they go through loops (*penguin and box diagrams*)

● Leptonic, semileptonic and radiative b→s decays are of particular interest since the SM rates (and other observables) can be calculated with high precision using effective theories (in terms of the Wilson coefficients)

• Rare (and very rare) processes: $BR_{SM} \sim 10^{-5} - 10^{-10}$, but experimentally accessible by flavour experiments (**B- factories & LHCb**)

 \rightarrow Experimental signature: high P_T leptons/photons

Excellent probe for physics beyond the SM
 → sensitivity to new heavy particles in the loops

H⁻, χ⁻,ĝ, χ⁰...

- LHC: Large $b\overline{b}$ cross section in pp colisions (gluon fusion) (~250 µb - 500 µb @ \sqrt{s} =7 - 14 TeV):
- LHCb: single-arm forward spectrometer (2 < η < 5): ~ 4% of the solid angle, ~30% of the *b* hadron production

• Very good performance: **3 fb**⁻¹ accumulated in Run1

LHCb Integrated Luminosity

XX Cracow EPIPHANY

A. Oyanguren

XX Cracow EPIPHANY

XX Cracow EPIPHANY

XX Cracow EPIPHANY

<u>Leptonic decays</u>: $B_{s/d} \rightarrow \mu^+ \mu^-$

FCNC + helicity supressed → Very Rare decay:

Standard Model prediction:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.35 \pm 0.28) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$$

• First evidence by LHCb in 2012 [LHCb, PRL110 (2013)021801] (2fb⁻¹) \rightarrow Now updated with **3fb**⁻¹

→ Blind analysis: don't look the data in $m(B_{d/s})\pm 60 \text{ MeV/c}^2$ until the end of the analysis

XX Cracow EPIPHANY

Leptonic decays:
$$B_{s/d} \rightarrow \mu^+\mu^-$$

• Two different normalization channels used:
 $P_{t} \rightarrow J/\psi K^+$
 P_{t

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \frac{\mathcal{B}_{\text{norm}} \epsilon_{\text{norm}} f_{\text{norm}}}{N_{\text{norm}} \epsilon_{\text{sig}} f_{d(s)}} \times N_{B^0_{(s)} \to \mu^+ \mu^-}$$

 ϵ_{sig} and ϵ_{norm} = $\epsilon_{trigger}$ x $\epsilon_{selection}$ x $\epsilon_{reconstruction}$

 f_{norm} and $f_{d(s)}$ = production fractions @ LHCb [LHCb-CONF-2013-011]

 \rightarrow The 2 normalization channels give compatible results

XX Cracow EPIPHANY

<u>Leptonic decays</u>: $B_{s/d} \rightarrow \mu^+ \mu^-$

• Results:

XX Cracow EPIPHANY

<u>Leptonic decays</u>: $B_{s/d} \rightarrow \mu^+ \mu^-$

• Combination witch CMS: [CMS PAS BPH-13-007]

<u>Lepton Flavour Violation</u>: $B_{s/d} \rightarrow e^+\mu^-$

[LHCb, PRL 111 (2013) 141801] (1fb⁻¹)

- Forbidden in the Standard Model
- Constrain New Physics models: Pati-Salam -LeptoQuarks (LQ)- model, 2HDM (Type III) ...

• Similar analysis method to $B_{s/d} \rightarrow \mu^+ \mu^-$: normalization and control channels $B_{s/d} \rightarrow K\pi$ (KK, $\pi\pi$)

<u>Lepton Flavour Violation</u>: $B_{s/d} \rightarrow e^+\mu^-$

• Results:

→ Largely improves (~ /20) CDF limits [PRL102(2009)201801]

XX Cracow EPIPHANY

<u>Lepton Flavour Violation</u>: $B_{s/d} \rightarrow e^+\mu^-$

• New Physics constraints: Pati-Salam Model (coupling different generations) $M_{LQ}(B_s^0 \rightarrow e^{\pm}\mu^{\mp}) > 107 (101) \text{ TeV}/c^2$ [Pati and A. Salam PRD10(1974)275]. $M_{LQ}(B^0 \rightarrow e^{\pm}\mu^{\mp}) > 135 (126) \text{ TeV}/c^2$

- New Physics amplitudes can modify branching fractions, angular observables, CP and isospin asymmetries ...
- The differential decay width depends on three angles θ_{ℓ} , θ_{κ} , ϕ and $q^2 = m_{\mu\mu}^2$

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_K \, d\phi \, dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K - F_L \cos^2\theta_K \cos 2\theta}{\tilde{W}} \right] \frac{1}{\tilde{V}\ell \, \tilde{\ell}} + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi}{\tilde{W}\ell \, \tilde{\ell}} + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi}{\tilde{V}\ell \, \tilde{\ell}} + \frac{1}{4} (1 - F_L) \sin^2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell}{\tilde{V}\ell \, \tilde{\ell}} + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell} \right]$$

• F_L and S_i are observables which are functions of the Wilson coefficients (sensitive to NP) and form factors (long distance effects, non-perturbative methods)

• A new set of observables, $\mathbf{P'}_{i=4,5,6,8} = \mathbf{S}_{i=4,5,7,8} / \sqrt{F_L (1-F_L)}$ can be defined, being less sensitive to the hadronic form-factors uncertainties

[S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 05 (2013) 137]

 $W \quad H^{\pm}$

 Z^0, γ

 $\tilde{b} t \tilde{q}$

SM

NP

h

q

- → Select at least one high P_T muon (> 1.5GeV/c) and one hadron displaced from PV
- → Candidates are retained in the $K^*(\rightarrow K^+\pi^-)$ invariant mass range
- → Signal selected with a BDT using kinematic, topological and PID info; trained with resonant B→ J/ψK* data (signal) and data from sidebands (background), and keeping flat the angular acceptance
- → $B \rightarrow J/\psi K^*$ data as control channel for Data/MC efficiencies
- → Ψ (2S) and J/ Ψ resonance regions vetoed
- →Analysis performed in six bins of q^2 and in the region $1 < q^2 < 6 \text{ GeV}^2$

➔ peaking backgrounds reduced to a negligible level

XX Cracow EPIPHANY

<u>Semi(di)leptonic Decays</u>: $B_d \rightarrow K^* \mu^+ \mu^-$

• In terms of the new observables P'_i:

- Agreement with the SM for P'_4 , P'_6 , P'_8
- Local discrepancy of 3.7σ is observed in the interval 4.30 < q² < 8.68 GeV²/c⁴ for P[′]₅
- ► Integrating over the region $1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$, the observed discrepancy is 2.5σ

 \rightarrow C₉ Wilson coefficient ? (update with 3fb⁻¹ in progress)

[S. Descotes-Genon, J. Matias, J.Virto, arXiv:1311.3876]

<u>Semi(di)leptonic Decays</u>: $B_d \rightarrow K^* \mu^+ \mu^-$

• Comparison with other experiments:

Semi(di)leptonic Decays:
$$B_d \rightarrow K^* \mu^+ \mu^-$$

• Other (non angular) observables:

[LHCb, PRL. 110 (2013)031801] (1fb⁻¹)

CP asymmetry:

$$\mathcal{A}_{\rm CP} = \frac{\Gamma(\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-) - \Gamma(B^0 \to K^{*0}\mu^+\mu^-)}{\Gamma(\overline{B}{}^0 \to \overline{K}{}^{*0}\mu^+\mu^-) + \Gamma(B^0 \to K^{*0}\mu^+\mu^-)}$$

<u>Radiative Decays</u>: $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

- Radiative $b \rightarrow s$ decays are also FCNC, with a photon in the final state
- Branching fractions and CP asymmetries can be largely affected by New Physics contributions
- In the SM, the **photon** from *b* decays is predominantly **left handed**, with small corrections of order $m_s/m_b \sim 2\%$

 \rightarrow The photon polarization is then sensitive to the spin structure of the New Physics \rightarrow It is largely affected in New Physics Models (particularly in Left-Right Symmetric Models)

The photon polarization parameter λ_{γ}

$$\lambda_{\gamma} \equiv \frac{|c_{\rm R}|^2 - |c_{\rm L}|^2}{|c_{\rm R}|^2 + |c_{\rm L}|^2}$$

expected to be -1 (\overline{B}) or +1 (B) with corrections of $(m_s/m_b)^2$ (C_R , C_L right and left amplitudes)

Can be extracted by studying the three body decay of a $K_J (J^P)$ resonant state in $B \rightarrow K_{res} \gamma$ radiative decays

[Kou et al, PRD83 (2011) 094007; Gronau et al, PRL88 (2002) 051802]

XX Cracow EPIPHANY

A. Oyanguren

 H^{\pm}

<u>Radiative Decays</u>: $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

• For a radiative $\mathbf{B} \rightarrow \mathbf{K}_{res} \gamma$, with the \mathbf{K}_{res} a three body decay $\mathbf{K}_{res} \rightarrow \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3$

 \rightarrow Need to count the number of events with photon emitted above/below the $\vec{p}_1 \vec{p}_2$ -plane and subtract them.

• There are two known $K_1(1^+)$ states, decaying into $K\pi\pi$ final state via $K^*\pi$ and ρK modes: the $K_1(1270)$ and $K_1(1400)$ resonances, from where the λ_{γ} can be measured.

XX Cracow EPIPHANY

<u>Radiative Decays</u>: $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

[LHCb-CONF -2013-009] (2fb⁻¹)

• Reconstruct a kaon resonance from three charged tracks: two pions of opposite sign and a kaon, plus a **high** E_T **photon**.

Individual resonances cannot be resolved without angular analysis, then:

- Use the full mass range to measure A_{CP}

$$\mathcal{A}_{\rm CP} = \frac{N(K^-\pi^+\pi^-\gamma) - N(K^+\pi^-\pi^+\gamma)}{N(K^-\pi^+\pi^-\gamma) + N(K^+\pi^-\pi^+\gamma)}$$

- Avoid the interference mass regions to measure A_{UD}

$$\mathcal{A}_{\mathsf{UD}} = \frac{N(K\pi\pi\gamma)_{_{\mathsf{cos}\theta>0}} - (K\pi\pi\gamma)_{_{\mathsf{cos}\theta<0}}}{N(K\pi\pi\gamma)_{_{\mathsf{cos}\theta>0}} + (K\pi\pi\gamma)_{_{\mathsf{cos}\theta<0}}}$$

(since there are effects from several contributions, results are difficult to interprete in terms of photon polarization)

XX Cracow EPIPHANY

XX Cracow EPIPHANY

XX Cracow EPIPHANY

Conclusions:

- LHCb has performed very well in Run1: **3fb**⁻¹
- Rare B decays are probes for Physics Beyond SM
- Many new measurements on Rare Decays at LHCb:
 - \rightarrow **B**, charm, tau sectors
 - → Leptonic, Semi(di)leptonic, Radiative decays

Only a few have been covered here!

- Few discrepancy with SM predictions to be followed
- Completing the analyses with the full statistics

Thank you!