

Paweł Malecki (IFJ PAN)

Standard Model & Flavour Physics measurements with the ATLAS Detector

on behalf of the ATLAS collaboration

Cracow Epiphany Conference 2014

Introduction

Introduction

- Energy ranges available at the LHC were never explored before.
- Measurements of Standard Model parameters are needed to validate theoretical extrapolations from lower-energy regimes.
- Precision measurements may reveal contributions from New Physics' processes to the studied phenomena.
- Improved precision of known parameters is possible to achieve with large available data samples.
- Data-based understanding of processes which constitute backgrounds for New Physics searches & Higgs observations is required.

The ATLAS detector

44m

Standard Model results

Standard Model results

ATLAS has published over 70 papers on Standard Model measurements. This talk covers only a small fraction of results:

• QCD

- Inclusive jet cross-section
- Jet cross-section ratio
- Running of α_s
- Inclusive photon cross-section

• Electroweak

- W&Z bosons inclusive
- A_{FB} in Z decays
- Z + jets production
- W+charm production
- High-mass Drell Yan
- Dibosons

Inclusive jet cross-section

- This measurement probes perturbative QCD and Parton Density Functions
- Measured with 2010 dataset of
 37 pb⁻¹ at Vs = 7 TeV
- Double-differential cross-section versus jet p_{τ} and raipdity
- Jets reconstructed with Anti- k_{τ} algorithm with 0.4 and 0.6 cone sizes
- Good agreement with pQCD description is found up to high energies (1.5 TeV)

 Main source of systematics: Jet Energy Scale

Jet cross-section ratio

- Measured the ratio of double-differential cross-sections vs p_T in pins of jet rapidity for $\sqrt{s} = 7$ TeV and $\sqrt{s} = 2.76$ TeV
- Large reduction of systematic uncertainties in the ratio better sensitivity to PDFs
- May be used to fit PDFs together with HERA data

Running of α_s

ATLAS-CONF-2013-041

- Number of events with additional radiated parton is proportional to α_s
- Measured a ratio of 3-jet vs 2-jet events with respect to leading-jet p_{τ} :

Inclusive photon cross-section

ATLAS-CONF-2013-022

- Cross-section for isolated prompt photons production measured with 7 TeV data (4.9 fb⁻¹) as a function of photon transverse energy.
- Comparisons to NLO pQCD calculations show good agreement in differential cross-sections.

W & Z bosons

Phys. Rev. D85 (2012) 072004

- Measurements performed with 2010 dataset (up to 36 pp + @ / iev)
- The cross-sections for W & Z boson inclusive production found to be in a good agreement with Standard Model
- W charge asymmetry provides constraints on PDFs

Forward-backward asymmetry in Z decays

ATLAS-CONF-2013-043

- Measured with 4.7 fb⁻¹ of data @ 7 TeV
- The Forward Backward asymmetry of lepton pairs is sensitive to weak mixing angle, $\sin^2\theta_w$

• $sin^2 \theta_w$ is extracted from $A_{_{FB}}$ spectra by comparing to MC predictions with varying initial conditions

• $\sin^2 \theta_w = 0.2297 \pm 0.0004(\text{stat}) \pm 0.0009(\text{syst})$

Z + jets production

JHEP07(2013)032 Measured total and differential cross-section for the production of Z boson in association with jets

Possible to check NLO predictions of jet multiplicities and momenta

W + charm production

• Measured in 4.6 fb⁻¹ of data @ 7 TeV

- Charm quark tagged by the presence of charm hadron decay such as: $D^+ \rightarrow K^+ \pi^+ \pi^-$, $D^{*+} \rightarrow D^0 \pi^+$ with $D^0 \rightarrow K^- \pi^+$, $D^0 \rightarrow K^- \pi^+ \pi^0$, $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ using trackbased reconstruction and charge correlation with W
- Ratio of cross-sections is sensitive to PDFs: $R_c^{\pm} \equiv \sigma(W^+ D^{(*)-}) / \sigma(W^- D^{(*)+})$

High-mass Drell – Yan processes

do [pb/GeV] (Born)

- Possible to measure cross-section high above Z-mass peak
- Provides (yet another) precision test of pQCD (NNLO), possible to give some constraints on PDFs (for antiquarks at large x)

8 January 2014

B-physics results

$\chi_{_{C1}}$ and $\chi_{_{C2}}$ production

ATLAS-CONF-2013-095

- Understanding of χ_{d} and χ_{d} (charmonium excited states) production is essential to understand charmonium production at hadron colliders and provides complemenary information to the measurements of J/ ψ and ψ (2S).
- Production modes: *prompt* (no displaced vertex, directly in pp or in decays of other charmonium states) and *non-prompt* – in decay chain of a b-hadron (displaced vertex)

• Observed selecting $\chi \rightarrow J/\psi(\mu^{\dagger}\mu^{\cdot})\gamma(e^{\dagger}e^{\cdot})$ and using mass difference distribution

Pa. Malecki - ATLAS SM & B results

Production of J/ ψ with W[±] bosons

ATLAS-CONF-2013-042

- The production of J/ψ still needs to be better understood (discrepancies in terms of differential cross-sections are significant).
- W+J/ ψ is quark-initiated and differs from typical gluon-fusion production of J/ ψ . A contribution from double-parton scattering (DPS) is also expected.
- Selection: High-energy μ + missing energy + pair of opposedly charged μ 's, fit mass & decay time spectra to obtain prompt component

ATLAS-CONF-2013-039

- A measureable CP-violating phase, ϕ_s appears in the interference of decay amplitudes of B^0_{s} via mixing or to $J/\psi \phi$. It is sensitive to New Physics
- Event selection: J/ψ dimuon trigger with invariant mass around J/ψ mass (2.9 3.3) GeV), pair of K⁺/K⁻ tracks with mass in (1.01 – 1.03 GeV) and B-meson mass in (5.15 - 5.65 GeV) in 4.9 fb⁻¹ @ 7 TeV
- Flavour tagging to obtain the initial flavour eigenstate of B⁰_c (opposite-side tagging with muon tagger or jet-charge tagger)

Angular analysis of $B^0_d \rightarrow K^{*0}\mu^+\mu^-$

ATLAS-CONF-2013-038

 B_d^0

 θ_K

- The transition b \rightarrow s only possible via loops
- Angular distributions of 4 decay products are sensitive to New Physics (interference of NP diagrams with SM diagrams)
- Analysis based on full 2011 dataset 4.9 fb⁻¹ @ 7 TeV
- Selection: Kπ and Kπμμ invariant masses (exclude J/ψ and ψ(2S) mass regions)
- Using unbinned Maximum Likelihood fit, fitting sequentially the invariant mass of B⁰_d and then the angular distributions (no full 3D fit due to lack of statistics):

Angular analysis of $B^0_d \rightarrow K^{*0}\mu^+\mu^-$

ATLAS-CONF-2013-038

It is possible to extract forward-backward asymmetry A_{FB} and

K^{*0} longitudinal polarization fraction F₁:

Consistent with SM predictions, uncertainty dominated by statistics. The analysis of 2012 dataset is ongoing.

B Physics: outlook

- Part of the results suffers from the lack of statistics
 - Analysis of 2012 data (20 fb⁻¹, 8 TeV) ongoing
- Currently: installing a new layer of pixel detector: IBL
- Fast-track trigger planned in 2016/2017
- New silicon-only Inner Detector 2022/2023

Summary

 Good performance of both the LHC machine and ATLAS detector: high luminosity, high efficiency of data-taking, good performance of computing & analysis model allows for detailed studies of many phenomena with high statistics of experimental data.

- Only a small subset of results presented in this talk.
- Very good agreement between Data & MC, measured cross-sections in agreement with NNLO estimations.
- In 2015 a restart of LHC is scheduled at the collision energy of 13 TeV new exciting results expected to appear!

Backup slides

B⁺ cross-section in B⁺ \rightarrow J/ ψ K⁺

JHEP 10 (2013) 042

Total background

Combinatorial background

 $B^{\pm} \rightarrow J/\psi K^{\pm}$

5.7

5.8

5.6

 $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ background $B \rightarrow J/\psi K \pi$ background

Data Fit

Signal

20 GeV < p_ < 25 GeV

5.5

0.5 < |y| <

5.4

Event selection:

- Data: 2.4 fb⁻¹ at Vs = 7 TeV taken in 2011
- J/ ψ candidates with m_{inv}($\mu^+\mu^-$) in 2.7-3.5 GeV
- Additional track matching to vertex
- B^+/B^- candidates with $p_{\tau} > 9$ GeV and |y| < 2.25

Background:

- Resonant J/ $\psi \pi$, J/ ψK^*
- Combinatorial $J/\psi X$

Results:

- Good agreement with **POWHEG+Pythia**
- Slight discrepancies in higher p₁ for MC@NLO+Herwig

ATLAS

1400

1200

000

800

600

400

200

O

5.1

5.2

5.3

Entries

Pa. Malecki - ATLAS SM & B results

p₋ [GeV]

