# Charm Production, Mixing and CP Violation

**Tadeusz Lesiak** 

Institute of Nuclear Physics Polish Academy of Sciences, Kraków

**On behalf of the LHCb Collaboration** 

XX Cracow Epiphany Conference, 8-10 January 2014





### **LHCb Detector**



#### LHCb is a forward arm spectrometer with a unique pseudorapidity range $2 < \eta < 5$





## **Charm Physics at LHCb**







## Mixing in the Charm Sector



The mass eigenstates  $|D_1^0>, |D_2^0>$  $|\overline{D}^0>, \ |\overline{\overline{D}}^0>$ do not coincide with the flavour eigenstates  $|D_1>=p|D^0>+q|\overline{D}^0>$  $|D_2>=p|D^0>-q|\overline{D}^0>$  $|p|^2 + |q|^2 = 1$ meson, produced in a pure flavour  $D^0, (\overline{D}^0)$ **MIXING** eigenstate, then evolves as a superposition of its mass (CHARM eigenstates of masses  $m_1$  and  $m_2$ , and widths  $\Gamma_1$  and  $\Gamma_2$ . **OSCILLATIONS**) **Two dimensionless parameters**  $x = \frac{m_1 - m_2}{\overline{a}}$  $y = \frac{\Gamma_1 - \Gamma_2}{2\overline{\Gamma}}$  $\overline{\Gamma} = \frac{\Gamma_1 + \Gamma_2}{2}$ characterising the mixing phenomenon:

Charm mixing rate is predicted to be small:  $|x|, |y| \le o(10^{-2})$ 

Large contributions from long-range processes and potential enhancements due to NP.

For charm the first evidence for mixing in 2007 (BaBar, Belle, CDF)BUT...until 2013 no single 5σ observation.



## Observation of $D^0 - \overline{D}^0$ Mixing





#### LHCb Search for CPV in $D^0 \rightarrow h^+h^-$ Decays **Charm** - the only up-type heavy quark; small effects of CP violation; large hadronic uncertainties. $A_{CP}(f;t) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to f)}$ Two time-dependent CP asymmetries are studied: $f = K^+ K^-, \quad \pi^+ \pi^-$ The final states: The flavour of the initial state is tagged by: the charge of the soft pion from the $D^{*\pm}$ 2) The charge of the muon from 1) semileptonic decays of b-hadrons ("B") $D^{*+} \rightarrow D^0 \pi_s^+$ $D^{*-} \rightarrow \overline{D^0} \pi_s^ \overline{B} \to D^0 \mu^- X \qquad B \to \overline{D}{}^0 \mu^+ X$ $K^ K^ ^{+} D^{0}$ . B $D_0$ pp coll $\pi^+$ $\pi^+$ lloc da $\pi^+_{\circ}$ Charm Production, Mixing and CPV

T.Lesiak



Tlesiak

## $\Delta A_{CP}$ from D<sup>\*</sup> Decays



Main variable: the difference between time-integrated asymmetries:

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$$

the raw asymmetry (π tag):

 $A_{\mathsf{raw}}(f) = \frac{N(D^{*+} \to D^0(f)\pi_s^+) - N(D^{*-} \to \overline{D}^0(f)\pi_s^-)}{N(D^{*+} \to D^0(f)\pi_s^+) + N(D^{*-} \to \overline{D}^0(f)\pi_s^-)}$ 

$$A_{\text{raw}}(f) = A_{CP}(f) + A_D(f) + A_D(\pi_s) + A_P(D^*)$$

Asymmetry in Asymmetry in the Asymmetry in selecting the D<sup>0</sup> selecting the  $\pi_s$ production for D\* from the D\* decay into the mesons final state f: decay chain  $A_D(K^+K^-) = 0$ If kinematics of the  $\pi_s$  and D\* are the same  $A_D(\pi^+\pi^-) = 0$ for  $D^0 \rightarrow KK$  and  $D^0 \rightarrow \pi\pi$ . each of these two terms is identical for KK and  $\pi\pi$  $\rightarrow$  cancellation in the difference.

 $A_{\text{raw}}(K^+K^-) - A_{\text{raw}}(\pi^+\pi^-) \approx A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = \Delta A_{CP}$ Charm Production, Mixing and CPV



## $\Delta A_{CP}$ from D<sup>\*</sup> Decays





$$\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10) \%$$

LHCb-CONF-2013-003



**ΔA<sub>CP</sub> from B Semileptonic Decays** 

 $A_{\mathsf{raw}}(f) = \frac{N(\overline{B} \to D^0(f)\mu^- X) - N(B \to \overline{D}^0(f)\mu^+ X)}{N(\overline{B} \to D^0(f)\mu^- X) + N(B \to \overline{D}^0(f)\mu^+ X)}$ 

the raw asymmetry (muon tag):

LHC



 $A_{\rm raw}(K^+K^-) - A_{\rm raw}(\pi^+\pi^-) \approx A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = \Delta A_{CP}(K^+K^-)$ 





### **ΔA<sub>CP</sub>** from B Semileptonic Decays





$$\Delta A_{CP} = (+0.49 \pm 0.30 \pm 0.14) \%$$

Phys. Lett. B 723 (2013), 33



*гнср* 

## Search for CPV in $D^0 \rightarrow h^+h^-$ Decays



World average (HFAG):

 $\Delta A_{CP} = (-0.329 \pm 0.121) \%$ 



LHCb average:

 $\Delta A_{CP} = (-0.15 \pm 0.16) \%$ 

Both LHCb measurements are consistent with each other and with other results at the  $2\sigma$  level.

No confirmation of the previous evidence of CP violation in the charm sector.

Better precision expected after analysis of data collected in 2012.





### Indirect CP Asymmetries $A_{\Gamma}$ in $D^0 \rightarrow h^+h^-$





Search for Direct CPV in 
$$D^+ \rightarrow \phi \pi^+$$
  
and  $D^+_s \rightarrow K^0_S \pi^+$  DecaysCharged initial charm states $\bullet$  $a$  non-zero CP asymmetrythe presence of direct CPV $D^+ \rightarrow \phi \pi^+$   
 $\phi \rightarrow K^+ K^ e$  non-zero CP asymmetrythe presence of direct CPV $D^+ \rightarrow \phi \pi^+$   
 $\phi \rightarrow K^+ K^ D^+ \rightarrow K^0_S \pi^+, K^0_S \rightarrow \pi^+ \pi^ A^{SM}_{CP}(D^+ \rightarrow K^0_S \pi^+) = 10^{-4}$   
the CPV asymmetry assumed ZERO  
no penguin amplitudes  $\rightarrow$  NP effects negligibleA concurrent measurement:  
 $D^+_s \rightarrow K^0_S \pi^+$ The control channel: $D^+_s \rightarrow \phi \pi^+, \phi \rightarrow K^+ K^-$ A concurrent measurement:  
 $D^+_s \rightarrow K^0_S \pi^+$ The control channel: $D^+_s \rightarrow \phi \pi^+, \phi \rightarrow K^+ K^-$ A concurrent measurement:  
 $D^+_s \rightarrow K^0_S \pi^+$ The control channel: $D^+_s \rightarrow \phi \pi^+, \phi \rightarrow K^+ K^-$ A concurrent measurement:  
 $D^+_s \rightarrow K^0_S \pi^+$ The control channel: $D^+_s \rightarrow \phi \pi^+, \phi \rightarrow K^+ K^-$ A concurrent measurement:  
 $D^+_s \rightarrow K^0_S \pi^+$ Angen (Channel) $D^+_s \rightarrow \phi \pi^+, \phi \rightarrow K^+ K^-$ A concurrent measurement:  
 $f = \phi \pi^+, K^0_S \pi^+$ Angen (f =  $\frac{N(D^+ \rightarrow f) - N(D^- \rightarrow f)}{N(D^+ \rightarrow f) + N(D^- \rightarrow f)}$ Asymmetry due to the CPV  
in the neutral kaon system:  
 $(-0.028 \pm 0.028)\%$ Concertain the concurrent measurement:  
 $(-0.028 \pm 0.028)\%$ Angen (f =  $\frac{N(D^+ \rightarrow f) - N(D^- \rightarrow f)}{N(D^+ \rightarrow f) + N(D^- \rightarrow f)}$ Asymmetry due to the CPV  
in the neutral kaon system:  
 $(-0.028 \pm 0.028)\%$ Concurrent measurement:  
 $LeidelAngen (Channel)Angen (f =  $\frac{N(D^+ \rightarrow f) - N(D^- \rightarrow f)}{N(D^+ \rightarrow f) + N(D^- \rightarrow f)}$ Asymmetry due to the CPV  
in the neutral kaon system:  
 $(-0.028 \pm 0.028)\%$$ 





### Search for CPV in $D^0 \rightarrow 4h$



Multibody charm decays  $\rightarrow$  rich resonance structures with interferring amplitudes,  $\rightarrow$  sensitivity to CPV localized in certain phase space regions.

Singly-Cabibbo-Suppressed (SCS) decays studied:  $D^0 \rightarrow K^- K^+ \pi^- \pi^+$  $D^0 \to \pi^- \pi^+ \pi^- \pi^+$ Phys. Lett. B 726 (2013), 623 The control channel (CF):  $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$  $n_4$ The charge of the soft pion from the decay  $h_3$  $D^{*+} \rightarrow D^0 \pi^+$  tags the flavour of the D meson.  $D^0$  $h_2$ 4-body final states  $\rightarrow$ pp coll  $h_1$ decay dynamics described by FIVE invariants:  $\pi_s^+$  $s(1,2), s(2,3), s(1,2,3), s(2,3,4), s(3,4) (D^0 \rightarrow 1234).$  $S_{CP}^{i} = \frac{N_{i}(D^{0}) - \alpha N_{i}(\overline{D^{0}})}{\sqrt{1 - \alpha N_{i}(\overline{D^{0}})}}$ The 5D phase space is partitioned into N<sub>bins</sub> volumes. In each of them, the significance of the difference in  $\alpha = \sum_{i} N_i(D^0)$ population between CP conjugate decays is calculated:  $\sum N_{i}(\overline{1}$ (removes the contribution No localised CPV asymmetries  $\Leftrightarrow$  Gaussian distr. of the S<sup>i</sup><sub>CP</sub> of global asymmetries)



### Search for CPV in $D^0 \rightarrow 4h$







### Search for CPV in $D^0 \rightarrow 4h$



#### Invariant mass-squared distributions for $D^0(\overline{D^0}) \to K^- K^+ \pi^- \pi^+$





T.Lesiak

### Search for CPV in $D^0 \rightarrow 4h$



(partitioned with 32 "bins")  $D^0 \to K^- K^+ \pi^- \pi^+$ 10 Entries / 0.5 Entries / 0.01 8 E LHCb  $S_{CP}$ LHCb  $A_{\mathrm{raw}}$  $7 \models D^0 \to K^- K^+ \pi^- \pi^+$ 8  $D^0 \rightarrow K^- K^+ \pi^- \pi^+$ 6 E 5 E 3 2 1 2 0 E 0 -2 -0.05 0.05 0.1 -4 0 0 2 4  $D^0 \to \pi^- \pi^+ \pi^- \pi^+$ (partitioned with 128 "bins") Entries / 0.5 Entries / 0.01 30 E LHCb 30 LHCb  $A_{\mathrm{raw}}$  $S_{CP}$  $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^ D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$ 25 25 20 20 E 15 15 10 E 10 E 5Ē 5 Tit 0 E 0 -0.05 0.05 0.1 1 -2 2 0 Charm Production, Mixing and CPV\_





Numerical estimate of any localised CPV asymmetries: the  $\chi^2$  test:

$$\chi^2 = \sum_i \left(S_{CP}^i\right)^2 \qquad \text{ndf} = N_{\text{bins}} - 1$$

p-value: probability of getting observed results if the no CPV hypothesis is assumed.





#### Search for CPV in $D^+ \rightarrow \pi^- \pi^+ \pi^+$





The decay dynamics described by TWO invariants (Dalitz plots):

 $s_{low}$  and  $s_{high}$ : the lowest and highest invariant mass squared combination  $M^2(\pi^+\pi^-)$ .

Charm Production, Mixing and CPV

21



### Search for CPV in $D^+ \rightarrow \pi^- \pi^+ \pi^+$







T.Lesiak

## X(3872) Quantum Numbers







## X(3872) Quantum Numbers





**Excited D<sub>1</sub> States** 



LHCb:

3000

2500

2000

Mass (MeV)



Several structures observed in the mass region between 2.5 and 3 GeV.

JHEP 09 (2013), 145

Charm Production, Mixing and CPV T.Lesiak





### **Excited D<sub>J</sub> States**



#### The $D^{*+}\pi^-$ (3-body) final state $\rightarrow$ information about the spin-parity assignment of a given resonance.









#### Masses, widths and yields determined for all the abovementioned resonances.

| Resonance       | Final           | Mass~(MeV)     |     |            | Width (MeV)   |      |            | Yields $\times 10^3$        | Significance |
|-----------------|-----------------|----------------|-----|------------|---------------|------|------------|-----------------------------|--------------|
|                 | state           |                |     |            |               |      |            |                             | $(\sigma)$   |
| $D_1(2420)^0$   | $D^{*+}\pi^-$   | $2419.6\pm$    | 0.1 | $\pm 0.7$  | $35.2\pm$     | 0.4  | $\pm 0.9$  | $210.2 \pm 1.9 \pm 0.7$     |              |
| $D_2^*(2460)^0$ | $D^{*+}\pi^{-}$ | $2460.4\pm$    | 0.4 | $\pm 1.2$  | $43.2\pm$     | 1.2  | $\pm 3.0$  | $81.9 \pm 1.2 \pm 0.9$      |              |
| $D_J^*(2650)^0$ | $D^{*+}\pi^{-}$ | $2649.2\pm$    | 3.5 | $\pm 3.5$  | $140.2\pm$    | 17.1 | $\pm 18.6$ | $50.7 \pm 2.2 \pm 2.3$      | 24.5         |
| $D_J^*(2760)^0$ | $D^{*+}\pi^{-}$ | $2761.1\pm$    | 5.1 | $\pm 6.5$  | $74.4\pm$     | 3.4  | $\pm 37.0$ | $14.4 \pm 1.7 \pm 1.7$      | 10.2         |
| $D_J(2580)^0$   | $D^{*+}\pi^{-}$ | $2579.5\pm$    | 3.4 | $\pm 5.5$  | $177.5\pm$    | 17.8 | $\pm 46.0$ | $60.3 \pm 3.1 \pm 3.4$      | 18.8         |
| $D_J(2740)^0$   | $D^{*+}\pi^{-}$ | $2737.0 \pm$   | 3.5 | $\pm 11.2$ | $73.2\pm$     | 13.4 | $\pm 25.0$ | $7.7 \pm 1.1 \pm 1.2$       | 7.2          |
| $D_J(3000)^0$   | $D^{*+}\pi^{-}$ | $2971.8\pm$    | 8.7 |            | $188.1\pm$    | 44.8 |            | $9.5\pm1.1$                 | 9.0          |
| $D_2^*(2460)^0$ | $D^+\pi^-$      | $2460.4\pm$    | 0.1 | $\pm 0.1$  | $45.6\pm$     | 0.4  | ±1.1       | $675.0 \pm \ 9.0 \ \pm 1.3$ |              |
| $D_J^*(2760)^0$ | $D^+\pi^-$      | $2760.1\pm$    | 1.1 | $\pm 3.7$  | $74.4 \pm$    | 3.4  | $\pm 19.1$ | $55.8 \pm 1.3 \pm 10.0$     | 17.3         |
| $D_J^*(3000)^0$ | $D^+\pi^-$      | $3008.1\pm$    | 4.0 |            | $110.5\pm$    | 11.5 |            | $17.6\pm1.1$                | 21.2         |
| $D_2^*(2460)^+$ | $D^0\pi^+$      | $2463.1\pm$    | 0.2 | $\pm 0.6$  | $48.6\pm$     | 1.3  | $\pm 1.9$  | $341.6 \pm 22.0 \pm 2.0$    |              |
| $D_J^*(2760)^+$ | $D^0\pi^+$      | $2771.7\pm$    | 1.7 | $\pm 3.8$  | $66.7\pm$     | 6.6  | $\pm 10.5$ | $20.1 \pm \ 2.2 \ \pm 1.0$  | 18.8         |
| $D_J^*(3000)^+$ | $D^0\pi^+$      | 3008.1 (fixed) |     |            | 110.5 (fixed) |      |            | $7.6\pm1.2$                 | 6.6          |

All significances are well above  $5\sigma$ .

Helicity angle distributions  $\rightarrow$  spin-parity assignments.



#### Summary of Excited D<sub>J</sub> States





LHCb:

LHCD

Similar study of  $D_{sJ}$  (  $D^+K^0_s$  and  $D^0K^+$  final states):

JHEP 10 (2012), 151













**Charm Mixing:** unambiguosly established; LHCb provided the first evidence with significance (far) above 5σ.

#### **CP Violation in Charm Sector:**

- $\checkmark \Delta A_{CP}$  in D<sup>0</sup>  $\rightarrow$  h<sup>+</sup>h<sup>-</sup>: consistent with zero with the updated data sample,
- $\checkmark$  the A<sub>r</sub> measurement gives no indication of indirect CPV,
- $\checkmark$  no evidence for the direct CPV in D<sup>+</sup> $\rightarrow$   $\phi\pi^+$  and D<sup>+</sup><sub>s</sub>  $\rightarrow$  K<sup>0</sup><sub>s</sub>  $\pi^+$  decays,
- ✓ no observation of localised CPV asymmetries in D<sup>0</sup> → 4h and D<sup>+</sup> →  $\pi^{-}\pi^{+}\pi^{+}$ .

#### Charm Spectroscopy:

- ✓ X(3872): spin-parity determined,
- $\checkmark$  D<sub>J</sub>: Several new states observed, spin-parities assigned,
- $\checkmark$   $\Xi_{cc}$ +: upper limits for the production given,
- $\checkmark$  Many other spectroscopy results e.g. about J/ $\psi$  and  $\chi_c$  not discussed in this talk...