Measurement of centrality and pseudorapidity dependence of elliptic flow in lead-lead collisions at 2.76 TeV with the ATLAS detector

Dominik Derendarz for the ATLAS Collaboration Institute of Nuclear Physics PAN, Kraków, Poland

XX Cracow Epiphany Conference January 8-10, 2014

Azimuthal anisotropy in heavy ion collisions

Pressure gradients lead to azimuthal anisotropy $\frac{dN}{d\phi} = N_0 \Big(1 + 2v_1 \cos(\phi - \Psi_1) + 2v_2 \cos(2(\phi - \Psi_2)) + 2v_3 \cos(3(\phi - \Psi_3)) + \dots \Big)$ directed flow elliptic flow triangular flow Fourier harmonics $v_n = \langle \cos(n(\Phi - \Psi_n)) \rangle$

- Initial shape of the interaction region (v_2 elliptic flow)
- Initial spatial fluctuations of interacting nucleons (higher orders, v_n)

ATLAS detector

The ATLAS Inner Detector is a composite tracking system consisting of silicon and gaseous detectors. **Inner detector** THE REAL PROPERTY AND ADDRESS **Three tracking techniques:** • ID tracks: p₇ > 0.5 GeV • Pixel tracks: p₋ > 0.1 GeV • Two point pixel tracklets (B-off): **Pixel detector** p₋ > 0.03 GeV **SCT detector TRT detector**

Integrated v_2 down to very low p_T

- Integrated v_2 flow harmonic measured using the EP method
- Reaching low p_T reduces uncertainty on the integrated v₂
- More robust comparison with theoretical model predictions possible

Pseudorapidity dependence of integrated v₂

- $v_{\gamma}(\eta)$ integrated over p_{τ} , shows weak pseudorapidity dependence
- $v_2(\eta)$ scaling consistent with the trend observed by PHOBOS at RHIC (Phys.Rev.C72:051901,2005)

Elliptic flow with cumulant method

• Elliptic flow harmonics of charged particles obtained with the cumulant generating function method

(N. Borghini, P.M.Dinh and J.Y. Ollitrault Phys.Rev.C 64 (2001) 054901)

v₂ measurement (e.g. with the Event Plane method) is distorted by non-flow effects (not related to the initial geometry)

• Cumulants of multi-particle (>2) correlations eliminates non-flow contributions

Comparison of v_{2} , v_{3} , v_{4} and v_{5} , EP

- Strong reduction of v_2 is observed by using four-particle cumulants
- v₂{4} consistent between ATLAS, ALICE and CMS
- The v₂{EP} lies between v₂{2} and v₂{4}

Elliptic flow fluctuations (cumulant method)

 Cumulant method provides a measure of elliptic flow fluctuations (N. Borghini, P.M.Dinh and J.Y. Ollitrault Phys.Rev. C64 (2001) 054901)

- For the 5-10% centrality fluctuations independent of p₁
- For less central collisions $\sigma_{v_2}/\langle v_2 \rangle$ increases with p_{τ}

Event – by – Event v₂ in Pb+Pb

Azimuthal distributions of charged particles in single events

- The probability distributions of the EbyE v_2 in several centrality intervals
- v₂ broaden from central to peripheral
- p(v₂) compatible with 2D
 Gaussian in most central events

Unfolded distributions of v₂

Elliptic flow fluctuations

- Fluctuations shows strong centrality dependence
- Same relative fluctuations for different p_T ranges
- Both models fail to describe data across full centrality range MC-KLN works better in more central and Glauber in more peripheral collisions

Summary

- ATLAS measured integrated v_2 flow harmonic reaching very low p_T
- Elliptic flow v₂{2} and v₂{4} were measured in broad range of centrality, η (|η|<2.5) and p₁ (0.5 < p₁ < 12 GeV)
- Relative fluctuations of elliptic flow were obtained from the cumulants and Event-by-Event measurements

Backup slides

Elliptic flow in p+Pb

Integrated v₂

p_T dependence of the v_2 of charged particles

- All centrality intervals shows:
 - Rapid rise in $v_2(p_T)$ up to $p_T \sim 3 \text{ GeV}$
 - Decrease out to 7-8 GeV
 - Weak p_T -dependence above 9-10 GeV
- The strongest elliptic flow at LHC is observed in centralities 30-50%

Event plane determination

Reaction plane (Ψ^{RP}) is approximated by event plane (Ψ_n^{EP}) measured in FCal:

•

- The event plane resolution correction factor R is obtained using two-sub event and various tree-subevent method
- Significant resolution for harmonics n=2 6
- Resolution corrected harmonics:

$$v_n = \langle \cos(n(\Phi - \Psi_n)) \rangle / R$$

Comparison with ALICE and RHIC experiments

• All data sets are quite consistent for both low and high $\ensuremath{p_{\text{T}}}$

Higher order harmonics scaling

- Hydrodynamics model suggests scaling v₄~v₂² (PHENIX PRL 105, 062301 (2010))
- The p_T-dependence of the v_n^{1/n}/v₂^{1/2} (n=3-6) ratio for several centrality selections
- Weak p_T-dependence of the ratio except 5% most central events
- Ratio for n=3 systematically lower than for n=4, 5

Two particle correlation vs EP results

Elliptic flow fluctuations

W. Broniowski, M. Rybczyński, P. Bożek arXiv:0710.5731

- Fluctuations shows strong centrality dependence
- $\sigma_2/\langle v_2 \rangle$ agrees with the Glauber MC model prediction with the exception of the peripheral collisions
- Consistent results from cumulants and EbyE measurement