

XX Cracow Epiphany Conference

on the Physics at the LHC 8-10 January 2014, Cracow, Poland

Heavy-Ion results from the CMS experiment

Bożena Boimska National Centre for Nuclear Research

on behalf of the CMS Collaboration

<u>Outline</u>

Introduction

Experimental results: PbPb vs. pPb

- □ Signals of (possible) collective behaviour
 - Two-particle correlations
 - p_T spectra of identified hadrons
- □ Hard probes
 - Nuclear modification factors
 - Study of dijet events
 - Quarkonia

Summary

26 published/submitted papers12 Physics Analysis Summaries (PAS)

http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Only some selected results presented today ...

B. Boimska (NCBJ)

Introduction

Heavy-lon data sets

	Year	Integrated Iuminosity
<u>PbPb</u>	2010	8.3 µb⁻¹
2.76 TeV	2011	150 μb ⁻¹
<u>pp</u> /s = 2.76 TeV	2011	231 nb ⁻¹
	2013	5.4 pb ⁻¹
<u>pPb</u> s _{NN} =	2012 (pilot run)	1 μb ⁻¹
5.02 TeV	2013	31 nb ⁻¹ (pPb) + (Pbp)

pPb@5.02TeV, 2013

IS Integrated Luminosity, pPb, 2013, $\sqrt{s} = 5.02$ TeV/nucleon

B. Boimska (NCBJ)

Introduction Centrality determination

- Collision centrality related to the energy deposit in forward calorimeters (HF) and multiplicity measured in Inner Tracker
- Example distribution of the total HF energy used to divide the PbPb sample into centrality bins

Collision centrality is related to geometrical quantities:

- N_{part} number of participating nucleons
- N_{coll} number of elementary NN collisions

Two-particle correlations

$$\begin{split} \Delta \eta &= \eta^{assoc} - \eta^{trig} \\ \Delta \phi &= \phi^{assoc} - \phi^{trig} \end{split}$$

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 10.01.2014

Associated hadron yield per trigger:

 $\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$

Unexpected "ridge" in high-multiplicity pp collisions

Ridge is not observed in low-multiplicity pPb collisions

Ridge-like structure observed in high-multiplicity (central) pPb collisions

Magnitude of the ridge in pPb much larger than in pp

Experimental results Integrated associated yield

- Similar behaviour for pPb and pp collisions
- But, trends for pPb much stronger than for pp

B. Boimska (NCBJ)

Integrated associated yield

For high statistics pPb 2013 data set, study for events with even higher multiplicity possible \rightarrow direct comparison with PbPb collisions

Similar behaviour for pPb and PbPb collisions

But, trends for pPb not as strong as for PbPb

B. Boimska (NCBJ)

<u>Long-range correlations: Pb+Pb, p+Pb, p+p</u>

Explanation of the effect:

Fluctuations of the initial geometry and hydrodynamical evolution

- Origin unclear for the small systems:
- hydrodynamical behaviour
 (but not really expected)
- initial-state gluon saturation (CGC)

B. Boimska (NCBJ)

Elliptic (v₂) and triangular (v₃) flow harmonics

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 10.01.2014

15

Other evidence of hydro flow in pPb?
 If azimuthal correlations are due to hydro flow, there must be also a mass splitting of p_T spectra – "radial flow"

■ Identified hadron p_T spectra:

Experimental results

Identified hadrons: <p_> vs. multiplicity

pp (0.9, 2.76, 7 TeV), pPb (5.02 TeV) PbPb (2.76 TeV, periph to central bands) ALICE (PRC88(2013)044910)

pPb collisions:

<p_> <p_T>: pions < kaons < protons</pre>

strong dependence of <p_T> values on multiplicity

Comparison to pp and PbPb:

pPb behaves similarly to pp for N_{tracks} < 40 but it is flatter for larger N_{tracks}

<p_> <p_> grows higher for pPb than for PbPb

For large N_{tracks}:

- PbPb is a mix of soft and hard collisions
- for pPb most violent collisions are selected

B. Boimska (NCBJ)

Control probes are unsuppressed

- Hadrons are modified (jet quenching)
- B. Boimska (NCBJ)

- Control probes are unsuppressed
- Hadrons and jets are modified (jet quenching)
- b-jets are similar to inclusive jets

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 10.01.2014

First measurement of b-jet R_{AA} !!

Nuclear modification factor

Reference data: pPb 5.02 TeV

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 10.01.2014

Is there jet quenching in pPb for dijets?

B. Boimska (NCBJ)

<u>Dijet η distribution</u> For different centrality classes:

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 10.01.2014

For more central collisions:

η_{dijet} distribution shifts towards Pb-going side (negative values)

 \Rightarrow shape of η_{dijet} distribution also changes - it gets narrower

<u>Dijet η distribution</u>

Dijet pseudorapidity distribution for pPb collisions is modified with respect to PYTHIA MC (pp)

B. Boimska (NCBJ)

Dijet η and nuclear PDFs

3

→ Dijet η_{dijet} distribution correlated with parton momentum fraction in Pb-ion (x_{Pb})

 Results for η_{dijet} give constraints on nPDFs

0.6

0.5

 $\frac{1}{1000} \frac{1}{\frac{1}{1000}} \frac{1}{\frac{1}{1000}}$

Quarkonia and the Quark-Gluon Plasma

- Bound states of heavy guark and antiguark
- Produced at early stage of collision ($\tau \approx 1/m_Q \approx 0.05-0.15$ fm/c)
- Produced in hard collisions \rightarrow pQCD applicable

3.69

0.05

0.45

- In QGP, colour screening (Debye screening) leads to melting of quarkonia \rightarrow suppression of quarkonium yields.
- Quarkonium states have different binding energies (radii)
- \rightarrow they melt at different temperatures of the created medium.

Quarkonia: mass, binding energy and radius ψ(2S)

3.53

0.20

0.36

J/ψ

3.10

0.64

0.25

Sequential melting of quarkonia \rightarrow thermometer of QGP

state

Mass(GeV)

 ΔE (GeV)

 $r_{o}(fm)$

Epiphany Conference, Cracow, 10.01.2014

state

Mass(GeV)

 ΔE (GeV)

 $r_{o}(fm)$

Y(1S)

9.46

1.10

0.28

Y(2S)

10.0

0.54

0.56

 $1/\langle r \rangle$

Y(1S)

J/ψ, Υ(2S)

450 MeV

240 Me

Mocsy, EPJC61 (2009) 705

Y(3S)

10.36

0.20

0.78

<u>Quarkonium suppression in PbPb</u>

 $R_{AA} = \frac{\text{(Yield in AA)}}{N_{COLL}(AA) \times \text{(Yield in pp)}}$

PRL 109 (2012) 222301 PAS-HIN-12-007 PAS-HIN-12-014

Υ states and $J/\psi\,$ dependence on centrality

Centrality-integrated R_{AA} vs. binding energy

Suppression increases with collision centrality

Less bound states are more suppressed than tighter bound ones \rightarrow sequential suppression of quarkonia

B. Boimska (NCBJ)

<u>Dimuon spectrum for 2013 data</u>

B. Boimska (NCBJ)

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 10.01.2014

First results for pPb

Ratio

Experimental results

PbPb < pPb < pp

PbPb vs pPb: In PbPb, presence of additional effects leading to stronger suppression of excited states compared to ground state

Relative production of excited state Υ (2S) or Υ (3S) to ground state $\Upsilon(1S)$ more suppressed in pPb

pPb vs pp:

arXiv:1312.6300

Y(nS)/Y(1S) decreases with event multiplicity for all systems: pp, pPb, PbPb*

* Large uncertainties for PbPb (need more data!)

 N_{tracks} – number of tracks with $p_T\!\!>\!\!400 MeV/c$ and $|\eta|\!<\!\!2.4$

pPb

10²

 $V_{\text{tracks}}^{|\eta| < 2.4}$

 10^{3}

What is the proper reference for PbPb collisions?

B. Boimska (NCBJ)

0.1

0.05

0년

10

Epiphany Conference, Cracow, 10.01.2014

arXiv:1312.6300

<u>Summary</u>

- CMS has broad heavy-ion program based on comparative studies of PbPb, pPb and pp collisions
- Presented results indicate that the medium created in PbPb:
 - \square Behaves collectively (ridge, v₂, v₃)
 - \Box Does not quench control probes (γ , W, Z)
 - \Box Strongly quenches partons, including b-quarks (R_{AA})
 - Causes dijet imbalance, but does not modify their angular correlation
 - $\hfill\square$ Suppresses quarkonia, including excited states of the Υ

For pPb also:

- □ Hints of possible collective behaviour (ridge, v_2 , v_3 , p_T spectra)
- □ Suppression of quarkonia ($\Upsilon(nS)/\Upsilon(1S)$ ratio)

but

 \Box No jet quenching (R_{pPb}, dijets)

Results for pPb collisions give constraints on nPDFs (R_{pPb}, η_{dijets})

CMS Detector

 $\begin{array}{l} \textbf{SILICON TRACKER} \\ \text{Pixels (100 x 150 } \mu m^2) \\ \sim 1m^2 & 66M \mbox{ channels} \\ \text{Microstrips (50-100} \mu m) \\ \sim 210m^2 & 9.6M \mbox{ channels} \end{array}$

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) 76k scintillating PbWO₄ crystals

> PRESHOWER Silicon strips ~16m² 137k channels

> > CASTOR CALORIMETER Tungsten + quartz plates

SUPERCONDUCTING SOLENOID Niobium-titanium coll carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field

Pixels

ECAL

HCAL

Solenoid

Muons

Steel Yoke

~13000 tonnes

ZERO-DEGREE CALORIMETER

STEEL RETURN YOKE

Tracker

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL) Brass + plastic scintillator

MUON CHAMBERS Barrel: 250 Drift Tube & 500 Resistive Plate Chambers Endcaps: 450 Cathode Strip & 400 Resistive Plate Chambers

FORWARD CALORIMETER Steel + quartz fibres

B. Boimska (NCBJ)