

ALICE Experimental Results

Adam Matyja

for the ALICE Collaboration

IFJ PAN, Kraków

XX Cracow Epiphany Conference

on the Physics at the LHC

8 - 10 January 2014

Kraków, Poland

Thanks to National Science Center, Poland DEC-2012/05/D/ST2/00855

8-10 January 2014, XX Cracow Epiphany Conference

Adam Matyja

Outline

Motivation

- Experimental apparatus
- Centrality determination
- Bulk properties from Pb-Pb collisions
 - □ Multiplicity
 - Particle production
 - Chemical (kinetic) freezeout temperature
 - Collective expansion
- News from p-Pb collisions
 - Double ridge structure
 - Identified particles spectra
 - Barion to meson ratio
- Jet quenching
 - Charged hadrons
 - Identified particles
 - Light flavours
 - Open and hidden charm
 - Reconstructed jets
- Summary

Motivation

- Investigate properties of nuclear matter at high temperature and density
- Important input for the understanding confinement and chiral symmetry restoration (transition from quark to hadronic matter)
- < 10⁻⁶ s after Big Bang
- Explore QCD in unknown regimes → study QCD phase diagram
- We should search for QGP phase and measure its properties
- LHC gives us the great opportunity via heavy ion collisions

Observables

Global observables

- □ Flow, temperature
- □ Measures bulk properties

Hard probes

- □ high p_T hadrons, heavy flavour, jets
- □ Produced early in collision
- Probe partonic energy loss in the medium

Tracking in ALICE

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

Particle Identification

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

8-10 January 2014, XX Cracow Epiphany Conference

Adam Matyja

Centrality estimation in Pb-Pb Phys. Rev. C 88, 044909 (2013)

- Centrality observables
 - Charge particle multiplicity in VZERO
 - □ Forward energy in ZDC
 - SPD for systematics
- Number of particle sources
 - $f \times N_{part} + (1 f) \times N_{coll}$
- Number of particles produced by each source given by Negative Binomial Distribution (μ , κ)
- Glauber model fits to cross-section
 - 100% trigger efficiency
 - Background is negligible
 - \rightarrow ~ 90% of total cross-section

with $\sigma_{\text{INEL}}^{\text{NN}} = 64 \pm 5 \text{ mb}$

<1% agreement (0-70%) N_{part} with Glauber fit 3.5 % for peripheral (>70%)

Define centrality classes corresponding to fractions of the inelastic Pb-Pb cross-section

Adam Matyja

VZERO amplitude (a.u.)

1000

"Centrality" in p-Pb

Estimator: V0A

- In p-Pb: multiplicity in Pb hemisphere
- Multiplicity \rightarrow geometry (Glauber)
 - □ Number of binary collisions
- Bias in binary scaling for multiplicity classes

Correlation between geometry and multiplicity is very weak! For p-Pb we present results in V0A multiplicity intervals

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

Bulk properties

Pb-Pb: Global properties I

Particle multiplicity and system size

For $\sqrt{s_{NN}}$ =2.76 TeV Pb+Pb, 0-5% central, $|\eta|$ <0.5

$2 \text{ dNch/d} / \langle \text{Npart} \rangle = 8.3 \pm 0.4 \text{ (sys.)}$

for the most central collisions: ~ 1600 charged particles per unit of η

log extrapolation fails

Multiplicity ~ 2 x N_{RHIC} Energy density ~ $3 \times \epsilon_{RHIC}$

Volume at freeze out $(2\pi)^{3/2} R_{out} R_{side} R_{long} \sim 5000 \text{ fm}^3$ Lifetime from collision to freeze out extracted from $R_{long} \sim 10 \text{ fm/c}$

Volume ~ 2 x V_{RHIC} Lifetime ~ 20 % longer than at RHIC

Pb-Pb: Global properties II

Direct photon spectrum and particle species

- For 0-40% Pb-Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- Exponential fit for p_T < 2.2 GeV/c
- \Rightarrow inv. slope T = 304 ± 51 MeV
- \Rightarrow Initial temperature T_{init} = 500-600 MeV
- "temperature" ~ 300 MeV \rightarrow largest ever man-made
- PHENIX: T = 221±19±19 MeV for 0-20% Au-Au at $\sqrt{s_{NN}}$ = 200 GeV

- Hadron species abundances described by thermal model
- But "tension" for protons
- Proton yield does not follow the results from statistical hadronization model when assuming a common chemical freeze-out temperature

Adam Matyja

Flow

- Spatial asymmetry → pressure gradients
 → momentum anisotropy
- To quantify the asymmetry:

 \rightarrow Fourier expansion of the angular distribution:

 $\frac{d^2 N}{dp_r d\varphi} \approx 1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \dots$ in the central detector region (~ 90°) \rightarrow v₁ ~ 0 \rightarrow asymmetry quantified with v₂ 0.08 ק 0.06 **€** ₩ 105 0.04 0.02 ALICE ☆ STAR 252302 <mark>۲</mark> PHOBOS □ PHENIX -0.02 NA49 **O** CERES -0.04 + E877 (2010 20% - 30% × EOS -0.06 ▲ E895 centrality class ▼ FOPI -0.08 10² 10^{3} 10 10⁴ √s_{NN} (GeV) 8-10 January 2014, XX Cracow Epiphany Conference

Larger flow than at RHIC For anisotropic flow: larger p_T integrated v_2 For radial flow: 10% larger expansion velocity

Pb-Pb: Global properties IV

Identified particle v_n

PLB 719,18 (2013)

ALI-DER-55851

- Identified particle elliptic flow
 - Mass ordering at low pT described by hydrodynamics
 - Particle species dependence persists up to p_T=8 GeV/c
- Small increase of flow in comparison to RHIC

Charm Quarks Flow

- D meson v₂>0
- Similar v₂ as pions
- Charm quarks also flow:
 - At low p_T due to the initial spatial anisotropy
 - \Box At high p_T due to energy loss

p-Pb news

Hadron-hadron correlations in p-Pb

High multiplicity

Low multiplicity

8-10 January 2014, XX Cracow Epiphany Conference

p-Pb

High – Low multiplicity

HF decay e^{\pm} – h correlations

Double ridge seen also in the correlation of heavy flavour decay electrons with hadrons

⇒ mechanism responsible for double ridge also works for heavy flavours

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

8-10 January 2014, XX Cracow Epiphany Conference

Adam Matyja

Barion to meson ratio

- Similar evolution of barion/meson ratio vs. p_T with multiplicity in Pb-Pb and p-Pb collisions
 - □ Enhancement at intermediate p_T

PRC 88,044910 (2013)

- Pb-Pb results understood in term of collective radial expansion and hadronization via quark recombination
- Different magnitude of the effect on p-Pb and Pb-Pb
- $\hfill\square$ Medium effect disappears at large p_T
- □ In a given p_T bin the ratio as a function of $dN_{ch}/d\eta$ follows a power law with the same exponent in p-Pb and Pb-Pb
- 8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

Nuclear Modification Factor

Suppression of $\pi/K/p$

- Equal suppression for pions, kaons and protons for $p_T > 8$ GeV/c
- \Rightarrow Particle composition at high p_{T} not affected by the medium

Identified hadrons

- Suppression of all prompt D meson yield
- No conclusion on expected enhancement of D_S/D at low p_T

Consistent with unity

Adam Matyja

Consistent with models that include CNM effects (CGC, shadowing)

26

25

Hierarchy in energy loss?

- Expectation from radiative energy loss: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
- Could be reflected in hierarchy of R_{AA} : $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$

 $R_{AA}(B) > R_{AA}(D)$ (but different fragmentation and p_T spectra)

8-10 January 2014, XX Cracow Epiphany Conference

Adam Matyja

Identified hadrons

- J/ψ less suppressed at low p_T than at high p_T
- Different p_T dependence of R_{AA} at RHIC and LHC

- R_{pPb} = 1 for Pb going side (backward)
- Suppression observed at forward and mid rapidity
- Rapidity dependence qualitatively described by models
- CGC less favored

Adam Matyja

Reconstructed jets

Jet cross-section in pp $\sqrt{s_{NN}}=2.76$

- Reference for Pb-Pb data
- Ratio is a sensitive observable to jet broadening
- Hadronization is needed to describe data

Reconstructed jets

Jets in Pb-Pb

- Unique low p_T range
- Strong suppression of jet yield in most central collisions
- Ratio of jet cross-sections compatible with fragmentation in vacuum (PYTHIA)
 - □ Sensitive to the profile of jet energy density
 - No evidence of jet shape modification in jet core

ALI-DER-63814

- Nuclear modification factor consistent with unity within uncertainties
- Jet structure ratio consistent with pp one (different energies)
- No CNM effect observed
- Comparison hadrons to jets
 - \rightarrow Binary scaling holds
 - \rightarrow Apple to pinaple comparison
 - 8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

Summary

- Small sample of ALICE results was presented
- Significant progress in QCD matter studies in Pb-Pb collisions
 - □ bulk production shows the expected strongly collective medium similar to RHIC
 - □ Strong suppression for hadrons, heavy flavours and jets observed
 - □ Hints of flavour hierarchy in the QCD transition
 - □ Jet quenching has little effect on hadr-chemistry and jet structure
 - □ Hints of b/c energy loss difference
 - \Box v₂ vs p_T mass ordering

p-Pb

- □ More than just a control experiment
- □ No evidence of quenching, similar effect were found in pp high multiplicity collisions
- □ A symmetric ridge under the jet found in 2 particle correlations
- □ Jets are not quenched and are similar to pp jets
- There are a lot of analysis ongoing

Thank you!

BACKUP

Experimental apparatus

⁸⁻¹⁰ January 2014, XX Cracow Epiphany Conference Adam Matyja

ALICE

p-Pb and Pb-p samples

Adam Matyja

Centrality in p-Pb ?

SPD

Different bias on binary scaling for different multiplicity estimators

➡ correlations between high p_T particles in the tracker and measured multiplicity

✓ jet-veto effect at low multiplicity

⇒bias reduced by η gap

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

10

definition of out-side-long axes

Lisa MA, et al. 2005. Annu. Rev. Nucl. Part. Sci. 55:357–402

standard way to parametrize source size in 3-dim

40

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

Blast-Wave fit:

Schnedermann et al., PRC 48, 2462 (1993)

- spectral-shape analysis performed with hydro-inspired model
- allows characterization of ID-spectra with small set of parameters

EPOS LHC:

Pierog et al., arXiv:1306.0121 [hep-ph]

- hard/soft scattering contribute to jet/bulk
- bulk matter described with hydro

Krakow:

Bozek, PRC 85, 014911 (2012)

- initial conditions from Glauber MC
- viscous hydrodynamic expansion
- statistical hadronization at freeze-out

DPMJET:

Roesler et al., arXiv:hep-ph/0012252

- QCD-inspired model
- reproduces dNch/dŋ in NSD p-Pb.

D meson elliptic flow

$$v_2 = \frac{1}{R_2} \frac{\pi}{4} \frac{N_{\text{in-plane}} - N_{\text{out-of-plane}}}{N_{\text{in-plane}} + N_{\text{out-of-plane}}}$$

Double ridge structure p-Pb

$$v_n = \sqrt{a_n/b}.$$

8-10 January 2014, XX Cracow Epiphany Conference

Adam Matyja

Identified particle spectra p-Pb

8-10 January 2014, XX Cracow Epiphany Conference Adam Matyja

R_{AA} in p-Pb

