A No-Hair Theorem for Non-Abelian Extreme Horizons

Carmen Li

The University of Edinburgh

9 January 2013

Main Result

A No-Hair Thoerem

Any stationary near horizon solution to the extremal Einstein-Yang-Mills black hole with a non-positive cosmological constant in 4-D is that of Kerr-Newman and therefore unique.
(1) Introduction
(2) Near-Horizon Coordinates
(3) Near-Horizon Equations
4) Stationary and Axisymmetric Near-Horizon Geometries
(5) Static Solutions

Motivation

(1) As mentioned by Romanowska and Kaneda the LHC is looking for microscopic black holes
(2) Extremal black holes $(\kappa=0)$ do not radiate via Hawking Radiation $T_{H}=\kappa / 2 \pi$
(3) Increasing evidence for instability of extremal black holes (Lucietti, Reall '12)
(9) All SUSY black holes are extremal
(6) All known extremal black holes have $A d S_{2}$ symmetry in their near-horizon geometries
(0) $A d S_{2}$ structure fundamental to quantum theory of extremal back holes from AdS/CFT correspondence
(0) Kerr/CFT correspondence (Guica et al. '08)

Motivation

(1) Black hole uniqueness does not apply to EYM black holes (Smoller, Wesserman and Yau '93)
(2) 4-D $S U(2)$ EYM theory with $\Lambda<0$ is a consistent truncation of $11-\mathrm{D}$ SUGRA on S^{7} (Pope '85)
(3) Existence of $A d S_{2}$ near-horizon symmetry proved for any extremal black hole with rotational symmetry in Einstein-Maxwell theory (Kunduri, Lucietti, Reall '07)
(4) We extend this to the non-abelian Einstein-Yang-Mills (EYM) theory with $\Lambda \leq 0$
(0) 4-D $S U(2)$ EYM theory with $\Lambda<0$ is a consistent truncation of 11-D SUGRA on S^{7} (Pope '85)

Near-Horizon Coordinates

(1) In the $\mathrm{N}-\mathrm{H}$ limit the extremal black hole metric in Gaussian null coordinates is

$$
d s^{2}=r^{2} F(x) d v^{2}+2 d v d r+2 r h_{a}(x) d v d x^{a}+\gamma_{a b}(x) d x^{a} d x^{b}
$$

- $r=0$ is the Killing horizon \mathcal{N} of the null vector $V=\frac{\partial}{\partial v}$
- x^{a} are coordinates on the closed 2-D spatial cross-section \mathcal{H}
(2) N-H metric is invariant under the 2-D non-abelian isometry group G_{2}
- translation $v \rightarrow v+$ constant generated by ∂_{v}
- "dilation" $r \rightarrow \epsilon r$ and $v \rightarrow v / \epsilon$ generated by $v \partial_{v}-r \partial_{r}$

Near-Horizon Equations

(1) Einstein Equation

$$
R_{\mu \nu}=2 \operatorname{Tr}\left(\mathcal{F}_{\mu}{ }^{\delta} \mathcal{F}_{\nu \delta}-\frac{1}{4} g_{\mu \nu} \mathcal{F}_{\rho \sigma} \mathcal{F}^{\rho \sigma}\right)+\Lambda g_{\mu \nu}
$$

(2) Yang-Mills 2-form $\mathcal{F}=d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}$ satisfies the Y - M field equation $D \star \mathcal{F}=0$
(3) In N-H limit \mathcal{F} takes the form

$$
\mathcal{F}=\mathcal{F}_{v r}(x) d v \wedge d r+r \mathcal{F}_{v a}(x) d v \wedge d x^{a}+\hat{\mathcal{F}}
$$

(9) The most general gauge field in $\mathrm{N}-\mathrm{H}$ limit is

$$
\mathcal{A}=r \Delta(x) d v+\hat{\mathcal{A}}
$$

(5) Hats denote quantities on \mathcal{H}
(0) For any \mathfrak{g}-valued form $\mathcal{D} X=d X+[\mathcal{A}, X]$

Near-Horizon Equations (cont.)

(1) The EYM system reduces to these equations defined purely on \mathcal{H}

$$
\begin{aligned}
\hat{R}_{a b}= & \frac{1}{2} h_{a} h_{b}-\hat{\nabla}_{(a} h_{b)}+\Lambda \gamma_{a b} \\
& +\operatorname{Tr}\left(2 \hat{\mathcal{F}}_{a c} \hat{\mathcal{F}}_{b}{ }^{c}+\Delta^{2} \gamma_{a b}-\frac{1}{2} \hat{\mathcal{F}}_{c d} \hat{\mathcal{F}}^{c d} \gamma_{a b}\right) \\
F= & \frac{1}{2} h_{a} h^{a}-\frac{1}{2} \hat{\nabla}_{a} h^{a}+\Lambda-\operatorname{Tr}\left(\Delta^{2}+\frac{1}{2} \hat{\mathcal{F}}_{a b} \hat{\mathcal{F}}^{a b}\right) \\
\hat{D} \star_{2} \hat{\mathcal{F}}= & \star_{2}(\hat{D} \Delta-h \Delta)+\star_{2} i_{h} \hat{\mathcal{F}} \\
\hat{\nabla}_{a} F= & F h_{a}+2 h_{b} \hat{\nabla}_{[a} h_{b]}-\hat{\nabla}_{b} \hat{\nabla}_{[a} h_{b]} \\
& -2 \operatorname{Tr}\left[\left(\hat{\mathcal{F}}_{a b}+\Delta \gamma_{a b}\right)\left(\hat{D}^{b} \Delta-h^{b} \Delta\right)\right]
\end{aligned}
$$

Stationary Horizon

(1) All stationary rotating black holes are axisymmetric according to rigidity theorem
(2) Stationary N-H metric therefore admits $G_{2} \times U(1)$ isometry
(3) Thus $\mathcal{H} \cong S^{2}$ or T^{2}
(9) The metric on \mathcal{H} can be written as

$$
\gamma_{a b} d x^{a} d x^{b}=\frac{d x^{2}}{B(x)}+B(x) d \phi^{2}
$$

(5) The metric data h can be written as

$$
h=-\frac{\Gamma^{\prime}(x)}{\Gamma(x)} d x+\frac{B(x) k^{\phi}(x)}{\Gamma(x)} d \phi
$$

for some functions $k^{\phi}(x)$ and $\Gamma(x)>0$

General Equations (cont.)

(1) We choose the gauge $\mathcal{L}_{\phi} \hat{\mathcal{F}}=0$ such that $\hat{\mathcal{F}}=a^{\prime}(x) d x \wedge d \phi$ with $\hat{\mathcal{A}}=a(x) d \phi$
(2) $\hat{R}_{x \phi}$ Einstein equation implies $k^{\phi}=k=$ constant
(3) Writing

$$
A=\Gamma^{2} F-k^{\phi 2} B, \quad R=\frac{r}{\Gamma}
$$

the 4-D N-H metric takes the form

$$
d s^{2}=R^{2} A d v^{2}+2 \Gamma d v d R+\frac{1}{B} d x^{2}+B(d \phi+k R d v)^{2}
$$

(9) $k=0$ corresponds to static case
(6) Remaining $\hat{R}_{a b}$ components gives Γ is a quadratic function of x therefore T^{2} topology is ruled out

Key Identities

(1) The Bianchi identity is equivalent to

$$
B\left(\frac{A}{\Gamma}\right)^{\prime}=4 \Gamma \operatorname{Tr}\left(\Delta\left[a, a^{\prime}\right]\right)
$$

(2) In Einstein-Maxwell theory the RHS vanishes thus A is proportional to
Γ; it can be shown $A=-C^{2} \Gamma$ therefore the isometry group for the metric is enhanced to $S O(2,1) \times U(1)$:

$$
d s^{2}=\Gamma\left(-C^{2} R^{2} d v^{2}+2 d v d R\right)+\frac{1}{B} d x^{2}+B(d \phi+k R d v)^{2}
$$

(3) Define the obstruction term $T \equiv \Gamma^{2} \operatorname{Tr}\left(\Delta\left[a, a^{\prime}\right]\right)$ and $e^{2} \equiv \Gamma^{2} \operatorname{Tr}\left(a^{\prime 2}+\Delta^{2}\right)$, Y-M field equations imply

$$
\begin{aligned}
B T^{\prime} & =-\Gamma^{2} \operatorname{Tr}\left(\left[a, a^{\prime}\right]^{2}+[a, \Delta]^{2}\right) \\
B\left(e^{2}\right)^{\prime} & =-4 T
\end{aligned}
$$

Main Result

(1) B $\partial / \partial x$ is a globally defined vector field which vanishes at the poles $\left(x_{1}, x_{2}\right)$ of S^{2}
(2) $B\left(e^{2}\right)^{\prime}=-4 T$ implies $T\left(x_{1}\right)=T\left(x_{2}\right)=0$
(3) Also have $B T^{\prime} \leq 0$ with $B T^{\prime}\left(x_{1}\right)=B T^{\prime}\left(x_{2}\right)=0$
(9) Suppose there is one point in $\left(x_{1}, x_{2}\right)$ where $B T^{\prime}<0$
(5) Then $T^{\prime}<0$ and the fundamental theorem of calculus states that

$$
T\left(x_{2}\right)-T\left(x_{1}\right)=\int_{x_{1}}^{x^{2}} T^{\prime} d x<0
$$

which contradicts with $T\left(x_{1}\right)=T\left(x_{2}\right)=0$.
(0) Hence $T=0$ for all $x_{1} \leq x \leq x_{2}$ and the obstruction term vanishes
(0) Find $A_{0}=A / \Gamma<0$ from integrating the R_{+-}Einstein equation for $\Lambda \leq 0$

Summary

We have shown that the near horizon geometry for a stationary and axisymmetric extremal black hole in the Einstein-Yang-Mills theory with $\Lambda \leq 0$ is given by

$$
d s^{2}=\Gamma\left(-C^{2} r^{2} d v^{2}+2 d v d r\right)+\frac{1}{B(x)} d x^{2}+B(x)(d \phi+k r d v)^{2}
$$

which admits an enhanced $S O(2,1) \times U(1)$ isometry, where the metric function $B(x)$ of the spatial cross-section $\mathcal{H} \cong S^{2}$ is

$$
B \Gamma=\frac{\beta g^{2}}{4} x^{4}+\left(\frac{6 g^{2} k^{2}}{\beta}-C^{2}\right) x^{2}+\frac{4}{\beta^{3}}\left(C^{2} \beta k^{2}-3 g^{2} k^{4}-e^{2} \beta^{2}\right) .
$$

This is isometric to the near-horizon limit of the extremal Kerr-Newman $\left(-A d S_{4}\right)$ metric.

Thank you

Staticity Conditions

(1) The timelike Killing vector is hypersurface orthogonal on a static Killing horizon

$$
V \wedge d V=0
$$

(2) This is equivalent to

$$
d h=0 \quad d F=F h \quad \hat{D} \Delta-\Delta h=0
$$

(3) Define θ such that $h=d \log \theta^{-2}$, Y-M field equation gives

$$
\hat{D}\left(\theta^{-2} \star_{2} \hat{\mathcal{F}}\right)=\hat{D}\left(\theta^{-2} \Delta\right)=0
$$

hence $b \equiv \theta^{-2} \star_{2} \hat{\mathcal{F}}$ and $e \equiv \theta^{-2} \Delta$ are covariantly constant
(9) Einstein equation implies

$$
2 \hat{\nabla}^{2} \theta=-\frac{4}{3} \Lambda \theta+4 \theta^{-3} \operatorname{Tr}\left(b^{2}+e^{2}\right)+C \theta^{-2}
$$

θ has two types of solutions: constant or non-constant θ

Static Solutions

(1) For non-constant θ one can check that \mathcal{H} cannot have S^{2} topology by requiring the absence of conical singularities
(2) For constant $\theta \mathrm{N}-\mathrm{H}$ metric becomes a direct product of $A d S_{2} \times \mathcal{H}$

$$
d s^{2}=-\left(\operatorname{Tr}\left(\Delta^{2}+\left(\star_{2} \hat{\mathcal{F}}\right)^{2}\right)+|\Lambda|\right) r^{2} d v^{2}+2 d v d r+\gamma_{a b} d x^{a} d x^{b}
$$

(3) Einstein equation implies \mathcal{H} is one of the maximally symmetric spaces

$$
\hat{R}_{a b}=\left(\operatorname{Tr}\left(\Delta^{2}+\left(\star_{2} \hat{F}\right)^{2}\right)+\Lambda\right) \gamma_{a b}
$$

(9) $A d S_{2} \times S^{2}$ is N-H limit of 4-D extremal Reissner-Nordström- $A d S_{4}$
(0) $\Lambda<0$ can be asymptotically locally AdS where topological censorship allows \mathcal{H} to have higher genus

Backup Slide

(1) Reduction of 11-D SUGRA

$$
d s_{11}^{2}=d s_{4}^{2}+2 g^{-2} d \xi^{2}+\frac{1}{2} g^{-2} \sum_{i}\left[\cos ^{2} \xi\left(\sigma^{i}-g A^{i}\right)^{2}+\sin ^{2} \xi\left(\tilde{\sigma}^{i}-g A^{i}\right)^{2}\right]
$$

