Tau identification and reconstruction at CMS

Robert Boniecki*

Faculty of Physics University of Warsaw

Cracow Epiphany Conference, 9th January 2013

*RB is supported by the Homing Plus programme of Foundation for Polish Science, cofinanced from European Union Regional Development Fund

▲ □ ▶ | ▲ 三 ▶

Tau lepton

Properties

- Heaviest lepton ($m_{\tau} = 1.78 \text{ GeV}$),
- short lifetime ($c \cdot \tau = 87 \ \mu m$),
- decays into hadrons ($\sim~65\%$) or lighter leptons ($\sim~35\%$).

Importance

- Search for Higgs boson.
- Search for supersymmetric particles.
- Electroweak measurements.

Requirements

- Efficient reconstruction,
- good performance in rejecting possible background contaminations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tau decay modes

Decay mode	Resonance	Mass (MeV/c ²)	Branching ratio (%)
$ au^- ightarrow h^- u_ au$			11.6
$ au^- ightarrow h^- \pi^0 u_ au$	$ ho^-$	770	26.0
$ au^- ightarrow h^- \pi^0 \; \pi^0 u_ au$	a_1^-	1200	10.8
$ au^ ightarrow$ $h^ h^+$ $h^ u_ au$	a_1^{-}	1200	9.8
$ au^ ightarrow$ $h^ h^+$ $h^ \pi^0$ $v_ au$	·		4.8
Other hadronic			1.7
Total hadronic			64.8
$ au^- ightarrow {\it e}^- \overline{ u}_{\it e} u_{ au}$			17.8
$ au^- ightarrow \mu^- \overline{ u}_\mu u_ au$			17.4
Total leptonic			35.2

- Signature isolated and collimated jets with low charged track multiplicity.
- ν_τ takes significant fraction of momentum,
- \Rightarrow visible mass is lower than m_{τ} .

Tau identification

Tau identification is a complicated problem which requires sophisticated algorithms and reconstruction of the tau decay mode.

Hadron Plus Strips (HPS)

is the currently used algorithm for hadronic tau decay reconstruction at CMS.

- HPS algorithm uses Particle Flow method.
- Particle Flow algorithm reconstructs a list of particles produced in the collision.

Hadron Plus Strips algorithm uses PFJet as a starting point.

- Charged hadrons are reconstructed with Particle Flow algorithm.
- π^0 's are reconstructed in ECAL as objects called strips.

Strips

•
$$\pi^0$$
 $ightarrow$ $\gamma\gamma$

- Photon conversions in the tracker material.
- Electron tracks bending in magnetic field broadening of the signal in the azimuthal direction.
- A strip of 0.05 in η and 0.20 in ϕ is built.
- Mass required to be consistent with π^0 .

< **(()** > < **()** > < **()** > < **()** > < **()** > < **()** > < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < (**)** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()**

Decay mode reconstruction				
HPS objects	tau decay mode			
1 hadron	$ au^- ightarrow h^- u_ au$			
	$ au^- ightarrow h^- \pi^0 u_ au,$ with low energy π^0			
1 hadron + 1 strip	$ au^- ightarrow h^- \pi^0 v_ au$, with both photons inside one strip			
1 hadron + 2 strips	$ au^- ightarrow h^- \pi^0 v_ au$, with photons well separated			
3 hadron	$ au^- ightarrow h^- h^+ h^- v_ au$, same secondary vertex			

Hadronic tau reconstruction

- Shrinking Cone size $\Delta R = (2.8 \text{ GeV}/c)/p_T^{\tau}$ has to contain all the reconstructed hadrons and strips.
- \vec{p}^{τ} is required to match the direction of the input PFJet.
- Decay must be compatible with a corresponding resonance (ρ or a₁) hypothesis.

< ロト < 同ト < ヨト < ヨト

Cut based isolation

- Isolation cone of size $\Delta R = 0.5$ around the signal cone.
- Sum p_T of charged hadrons and photons outside the signal cone, but inside the isolation cone.
- Working points: Loose, Medium and Tight.
- Pile-up affects the isolation.

Charged pile-up: solved with a vertex constraint.

Neutral pile-up: estimated from charged pile-up tracks inside isolation cone.

Multivariate (MVA) isolation

- Based on energy deposits in five rings around tau direction.
- Uses a Boosted Decision Tree trained against jet $\rightarrow \tau$ misidentification.

イロト イポト イヨト イヨト

- Efficiency is flat for $p_T > 25$ GeV for both cut-based and MVA isolation.
- MVA isolation provides the highest efficiency (~ 70% for Loose working point).
- The dependence of efficiency on pile-up is weak.

- Result obtained with W + Jet events.
- Fake rate lower than 3%.
- Fake rate with MVA isolation 10-20% lower than cut-based isolation.

< ∃⇒

- Tau reconstruction is very important for many physics analyses.
- Tau reconstruction in CMS is very good thanks to the HPS algorithm.
- The algorithm takes advantage of different tau lepton decay modes.
- Tau isolation uses two methods:
 - A well established and thoroughly validated cut-based approach.
 - MVA isolation, showing superior efficiency and fake rate.

4 1 1 1 4 1

- [1] CMS Collaboration, "Study of tau reconstruction algorithms using pp collision data collected at $\sqrt{(s)} = 7$ TeV", *CMS PAS* **PFT-10-004** (2010)
- [2] CMS Collaboration, "Performance of tau reconstruction algorithms in 2010 data collected with CMS", CMS PAS TAU-11-001 (2011)
- [3] CMS Collaboration, CMS Particle Flow and Tau Identification Results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsPFT

b 4 = b

Performance comparison between cut-based and MVA isolation.

< ∃→