Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs.

Aleksandra Drozd Institute of Theoretical Physics, University of Warsaw

Epiphany Conference, Cracow, January 9th 2014

The project "International PhD Studies" at the University of Warsaw is realized within the MPD programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

Outline:

- what is 2HDM?
- 2HDM setup of the analysis
 - constraints on the model (theoretical and experimental)
 - different mass hierarchy scenarios
- results and conclusions
- A. Drozd, B. Grządkowski, J. Gunion, Y. Jiang, arXiv:1211.3580 Two-Higgs-Doublet Models and Enhanced Rates for a 125 GeV Higgs
- Ferreira, Santos, Sher, Silva, Haber and others

2HDM - quick review

The general Higgs sector potential:

$$\begin{split} \mathcal{V} = & m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 \right)^2 \\ & + \frac{1}{2} \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) \\ & + \left\{ \frac{1}{2} \lambda_5 \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \left[\lambda_6 \left(\Phi_1^{\dagger} \Phi_1 \right) + \lambda_7 \left(\Phi_2^{\dagger} \Phi_2 \right) \right] \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right\} \end{split}$$

$$\Phi_{a} = \begin{pmatrix} \varphi_{a}^{+} \\ (v_{a} + \rho_{a} + i\eta_{a})/\sqrt{2} \end{pmatrix} \quad a = 1, 2$$

where $v_1 = v \cos \beta$, $v_2 = v \sin \beta$, $v \approx 246 \text{ GeV}$, $0 \le \beta \le \pi/2$

Neutral physical states:
$$(-\pi/2 \le \alpha \le \pi/2)$$

$$h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha, \quad H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$$

$$A = -\eta_1 \sin \beta + \eta_2 \cos \beta$$
http://www.fuw.edu.pl/~mpd/

Lagrangian Yukawa:

$$\mathcal{L}_{Y}^{(q)} = \bar{Q}_{L}\tilde{\mathsf{\Gamma}}_{1}u_{R}\tilde{\Phi}_{1} + \bar{Q}_{L}\mathsf{\Gamma}_{1}d_{R}\Phi_{1} + \bar{Q}_{L}\tilde{\mathsf{\Gamma}}_{2}u_{R}\tilde{\Phi}_{2} + \bar{Q}_{L}\mathsf{\Gamma}_{2}d_{R}\Phi_{2} + h.c.$$

and

$$\mathrm{M}_{\mathrm{u}} = -\tilde{\mathsf{\Gamma}}_1 < \tilde{\Phi}_1 > -\tilde{\mathsf{\Gamma}}_2 < \tilde{\Phi}_2 >, \ \mathrm{M}_{\mathrm{d}} = -\mathsf{\Gamma}_1 < \Phi_1 > -\mathsf{\Gamma}_2 < \Phi_2 >$$

- Type I: $\Phi_1 \rightarrow -\Phi_1, \ \lambda_6 = \lambda_7 = 0$ (Z₂ softly broken by $m_{12}^2 \neq 0$)
- Type II: $\Phi_1 \rightarrow -\Phi_1$ and $d_R \rightarrow -d_R$, $\lambda_6 = \lambda_7 = 0$ (Z₂ softly broken by $m_{12}^2 \neq 0$)

Aleksandra Drozd

http://www.fuw.edu.pl/~mpd/

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

• 7 parameters in scalar potential, multiple possible basis

Physical basis:

•
$$m_{h}, m_{H}, m_{A}, m_{H^{\pm}}, \sin(\beta - \alpha)$$

• m_{12}^2 , $tg\beta$

• 2 types of Yukawa interaction

Aleksandra Drozd

900

Theoretical Constraints (SUP):

- tree level vacuum Stability $\lambda_1, \lambda_2 > 0$ $\lambda_3 > -\sqrt{\lambda_1 \lambda_2}$ $\lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$ (when $\lambda_6 = \lambda_7 = 0$)
- perturbative Unitarity $|L_i| < 8\pi$
- Perturbativity $|C_{h_j h_j h_k h_l}| < 4\pi$

900

Experimental Constraints:

- precision electroweak data: S,T,U constraints
- bounds in the $(m_{H^{\pm}}, tg \beta)$ plane from various B-physics constraints for the type I/II (0805.2141, 1006.0470, 0912.0267)

LEFT: solid line: bounds from $Z \to b\bar{b}, \epsilon_K, \Delta_{B_S}$; dashed: bounds from $B \to \gamma X_s$ RIGHT: bounds from various B-physics constraints for the typeII model

Aleksandra Drozd

http://www.fuw.edu.pl/~mpd/

LHC signal normalized to SM predictions

$$\begin{split} R^{h_i}_{gg}(X) &\equiv (C^{h_i}_{gg})^2 \ \frac{BR(h_i \to X)}{BR(h_{SM} \to X)}, \ R^{h_i}_{VBF}(X) &\equiv (C^{h_i}_{WW})^2 \frac{BR(h_i \to X)}{BR(h_{SM} \to X)} \\ C^{h_i}_{gg}, C^{h_i}_{WW} \ \text{are ratios of } gg \to h_i, \ WW \to h_i \ \text{couplings to the SM} \end{split}$$

Aleksandra Drozd

Input parameters:

- model type (I or II)
- \bullet physical masses (m_h,m_H,m_A,m_{H^\pm})
- $\operatorname{tg}\beta$
- m_{12}^2

2HDMC code:

D. Eriksson, J. Rathsman and O. Stal, Comput. Phys. Commun. 181, 189 (2010), arXiv:0902.0851

Aleksandra Drozd

http://www.fuw.edu.pl/~mpd/

San

Different Possible Scenarios:

```
\begin{array}{ll} I. \ m_h\simeq 125 GeV\\ II. \ m_H\simeq 125 GeV\\ III. \ m_h\simeq m_H\simeq 125 GeV\\ IV. \ m_h\simeq m_A\simeq 125 GeV\\ V. \ m_H\simeq m_A\simeq 125 GeV \end{array}
```

	scenario I	scenario II	scenario III	scenario IV	scenario V						
m_h [GeV]	125	$\{10, \ldots, 124.9\}$	125	125	$\{10, \ldots, 124.9\}$						
m_H [GeV]	$125 + \{0.1, \ldots, 1000\}$	125	125.1	$125 + \{0.1, \ldots, 1000\}$	125						
m_A [GeV]	$\{10, \ldots, 1000\}$	$\{10, \ldots, 1000\}$	$\{10, \ldots, 1000\}$	125.1	125.1						
mai [GeV]	1500 $(\tan \beta = 0.5)$; 800 $(\tan \beta = 1)$; 250,350 $(\tan \beta = 2)$; 90,150,250,350 $(\tan \beta > 2)$ for Type I										
m _H ± [dev]	600 (tan β =0.5); 500 (tan β =1); 340 (tan β =2); 320 (tan β >2) for Type II										
$\tan \beta$			$\{0.5, \ldots, 20\}$								
$\sin \alpha$			$\{-1,, 1\}$								
$m_{12}^2 [{\rm GeV}^2]$			$\{-1000^2, \ldots, 1000^2\}$								

TABLE II: Range of parameters adopted in the scans. The values of $m_{H^{\pm}}$ are bounded from below by the constraints from B physics, see Fig. 15 and Fig. 18 of 12 for the Type II and Type I models, respectively.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

$\tan\beta$	$R^h_{ggmax}(\gamma\gamma)$	$R^h_{gg}(ZZ)$	$R^h_{gg}(b\overline{b})$	$R^{h}_{\rm VBF}(\gamma\gamma)$	$R^h_{\rm VBF}(ZZ)$	$R^h_{VBF}(b\overline{b})$	m_H	m_A	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$ \mathcal{A}^h_{H^\pm}/\mathcal{A} $	δa_{μ}
1.0	0.98	1.00	1.02	0.96	0.98	1.00	875	750	800	500	-0.7	-0.01	-2.3
2.0	0.98	0.98	0.92	1.04	1.04	0.98	425	500	350	200	-0.5	-0.01	-1.8
3.0	1.02	0.98	0.92	1.08	1.04	0.98	225	400	150	100	-0.4	0.01	-1.7
4.0	1.33	0.99	1.07	1.24	0.93	0.99	225	200	90	100	-0.1	0.14	-1.7
5.0	0.98	0.98	1.06	0.90	0.91	0.98	225	400	150	100	-0.0	0.01	-1.6
7.0	1.04	0.99	0.98	1.06	1.01	0.99	135	500	90	50	-0.2	0.02	-1.6
10.0	0.90	0.81	0.74	0.99	0.89	0.81	175	500	150	50	-0.5	0.04	-1.5
15.0	0.46	0.59	0.66	0.41	0.53	0.59	225	400	350	50	0.6	-0.11	-1.4
20.0	1.31	1.00	1.00	1.30	0.99	1.00	225	200	90	50	-0.0	0.13	-1.5

TABLE III: Table of maximum $R_{gg}^h(\gamma\gamma)$ values for the Type I 2HDM with $m_h = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^h(\gamma\gamma)$ value are also tabulated.

$\tan\beta$	$R^{h}_{ggmax}(\gamma\gamma)$	$R^{h}_{g}(ZZ)$	$R^{h}_{gg}(b\overline{b})$	$R^{h}_{VBF}(\gamma\gamma)$	$R^h_{VBF}(ZZ)$	$R^{h}_{VBF}(b\overline{b})$	m_H	m_A	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$ \mathcal{A}^{h}_{H^{\pm}}/\mathcal{A} $	δa_{μ}
0.5	1.56	2.69	1.84	0.52	0.89	0.61	425	500	600	100	-0.7	-0.06	-0.5
1.0	1.97	3.36	0.39	0.65	1.11	0.13	125	500	500	100	-0.2	-0.06	0.7
2.0	2.59	3.36	0.00	1.48	1.92	0.00	225	200	340	100	-0.0	-0.05	1.6
3.0	2.78	3.29	0.00	2.01	2.37	0.00	225	200	320	100	-0.0	-0.05	1.6
4.0	2.84	3.25	0.00	2.24	2.57	0.00	225	200	320	100	-0.0	-0.04	1.6
5.0	2.87	3.23	0.00	2.37	2.66	0.00	225	200	320	100	-0.0	-0.04	1.6
7.0	2.83	3.21	0.00	2.42	2.75	0.00	135	300	320	50	-0.0	-0.05	0.8
10.0	0.34	0.43	1.89	0.22	0.28	1.23	325	200	320	100	0.2	-0.08	3.5
15.0	0.02	0.03	4.06	0.00	0.01	0.87	225	200	320	50	0.6	-0.14	5.3
20.0	2.89	3.19	0.00	2.57	2.83	0.00	225	200	320	50	-0.0	-0.04	2.4

TABLE IV: Table of maximum $P_{ag}(\gamma\gamma)$ values for the Type II 2HDM with $m_h = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^h(\gamma\gamma)$ value are also tabulated.

http://www.fuw.edu.pl/~mpd/

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$\tan \beta$	$R_{ggmax}^{H}(\gamma\gamma)$	$R_{gg}^H(ZZ)$	$R_{gg}^H(b\overline{b})$	$R_{\rm VBF}^H(\gamma\gamma)$	$R^H_{VBF}(ZZ)$	$R_{VBF}^{H}(b\overline{b})$	m_h	m_A	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$ \mathcal{A}_{H^{\pm}}^{H}/\mathcal{A} $	δa_{μ}
2.0	0.90	1.00	1.02	0.89	0.99	1.00	125	400	350	50	0.9	-0.05	-2.1
3.0	0.89	0.96	0.88	0.97	1.05	0.96	125	400	350	50	0.9	-0.05	-1.8
4.0	0.89	0.97	1.09	0.79	0.86	0.97	105	500	90	50	1.0	-0.03	-1.7
5.0	0.93	0.98	1.06	0.86	0.90	0.98	125	500	90	50	1.0	-0.01	-1.6
7.0	0.88	0.99	1.03	0.85	0.95	0.99	65	400	350	10	1.0	-0.05	-1.6
10.0	0.89	1.00	1.02	0.87	0.98	1.00	45	400	350	0	1.0	-0.05	-1.6
15.0	0.90	1.00	1.01	0.89	0.99	1.00	5	400	350	0	-1.0	-0.05	-1.6
20.0	0.90	1.00	1.00	0.89	0.99	1.00	25	400	350	0	-1.0	-0.05	-1.5

TABLE V: Table of maximum $R_{gg}^H(\gamma\gamma)$ values for the Type I 2HDM with $m_H = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^H(\gamma\gamma)$ value are also tabulated.

$\tan\beta$	$R_{ggmax}^{H}(\gamma\gamma)$	$R_{gg}^{H}(ZZ)$	$R_{gg}^H(b\overline{b})$	$R_{\rm VBF}^H(\gamma\gamma)$	$R_{\rm VBF}^H(ZZ)$	$R_{VBF}^{H}(b\overline{b})$	m_h	m_A	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$\mathcal{A}_{H^{\pm}}^{H}/\mathcal{A}$	δa_{μ}
1.0	1.99	3.24	0.52	0.71	1.16	0.19	125	500	500	100	1.0	-0.06	0.7
2.0	2.56	3.36	0.00	1.46	1.92	0.00	125	300	340	50	1.0	-0.06	1.1
3.0	2.73	3.29	0.00	1.97	2.37	0.00	125	300	320	50	1.0	-0.05	1.0
4.0	2.78	3.25	0.00	2.20	2.57	0.00	125	300	320	50	-1.0	-0.05	1.0
5.0	2.81	3.23	0.00	2.32	2.66	0.00	125	300	320	50	-1.0	-0.05	0.9
7.0	2.80	3.21	0.00	2.40	2.75	0.00	65	300	320	10	-1.0	-0.06	-0.0
10.0	2.81	3.20	0.00	2.46	2.79	0.00	45	300	320	0	-1.0	-0.06	-2.8
15.0	2.82	3.19	0.00	2.49	2.82	0.00	25	300	320	0	-1.0	-0.05	-16.9
20.0	2.82	3.19	0.00	2.50	2.83	0.00	25	300	320	0	-1.0	-0.05	-30.8

TABLE VI: Table of maximum $R_{gg}^{H}(\gamma\gamma)$ values for the Type II 2HDM with $m_{H} = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^{H}(\gamma\gamma)$ value are also tabulated.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

- $\begin{array}{ll} \mathrm{III.} & \mathrm{m_h}\simeq\mathrm{m_H}\simeq125 \mathrm{GeV}\\ \\ \mathrm{IV.} & \mathrm{m_h}\simeq\mathrm{m_A}\simeq125 \mathrm{GeV} \end{array}$
- $V.~m_{H}\simeq m_{A}\simeq 125 GeV$

Aleksandra Drozd

http://www.fuw.edu.pl/~mpd/

- 2

590

イロト イボト イヨト イヨト

$\tan\beta$	$R_{ggmax}^{h+A}(\gamma\gamma)$	$R^{h}_{gg}(\gamma\gamma)$	$R^A_{gg}(\gamma\gamma)$	$R_{gg}^{h+A}(ZZ)$	$R_{gg}^{h+A}(b\overline{b})$	$R^{h}_{VBF}(\gamma\gamma)$	$R^h_{\rm VBF}(ZZ)$	$R^h_{VBF}(b\overline{b})$	m_H	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$\mathcal{A}^{h}_{H^{\pm}}/\mathcal{A}$	δa_{μ}
2.0	1.07	0.92	0.15	0.98	1.73	0.98	1.04	0.98	325	250	100	-0.5	-0.04	-2.2
3.0	1.08	1.02	0.07	0.98	1.28	1.08	1.04	0.98	225	150	100	-0.4	0.01	-1.9
4.0	1.35	1.33	0.03	0.99	1.21	1.24	0.93	0.99	225	90	100	-0.1	0.14	-1.8
5.0	0.96	0.95	0.01	1.00	1.07	0.95	1.00	1.00	135	90	50	-0.2	-0.03	-1.7
7.0	1.04	1.04	0.01	0.99	1.00	1.06	1.01	0.99	135	90	50	-0.2	0.02	-1.6
10.0	0.91	0.90	0.01	0.81	0.77	0.99	0.89	0.81	175	150	50	-0.5	0.04	-1.5
15.0	0.42	0.42	0.00	0.59	0.67	0.37	0.53	0.59	225	250	50	0.6	-0.17	-1.4
20.0	1.31	1.31	0.00	1.00	1.00	1.30	0.99	1.00	225	90	50	-0.0	0.13	-1.6

TABLE VII: Table of maximum $R_{gg}^{h+A}(\gamma\gamma)$ values for the Type I 2HDM with $m_h = m_A = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^{h+A}(\gamma\gamma)$ value are also tabulated.

4 0	D^{h+A} (and	Dh (and)	$D^A(aa)$	$D^{h+A}(77)$	$D^{h+A(l\overline{l})}$	D^h (and)	\mathbf{D}^h (77)	D^{h} $(L\overline{L})$				ain a	Ah IA	5
$tan \rho$	$n_{ggmax}(\gamma\gamma)$	$n_{gg}(\gamma\gamma)$	$n_{gg}(\gamma\gamma)$	n_{gg} (22	n_{gg} (00)	$n_{VBF}(\gamma\gamma)$	$n_{\rm VBF}(22)$	$n_{\rm VBF}(00)$	m_H	$m_{H^{\pm}}$	m_{12}	$\sin \alpha$	$A_{H^{\pm}}/A$	$o a_{\mu}$
1.0	2.05	1.58	0.47	2.05	3.91	0.93	1.22	0.65	525	500	100	-0.5	-0.06	1.3
2.0	1.18	1.17	0.01	1.31	1.68	1.07	1.20	0.87	325	340	100	-0.4	-0.05	1.5
3.0	2.78	2.78	0.00	3.29	0.27	2.01	2.37	0.00	225	320	100	-0.0	-0.05	2.3
4.0	2.84	2.84	0.00	3.25	0.23	2.24	2.57	0.00	225	320	100	-0.0	-0.04	2.3
5.0	1.89	1.89	0.00	2.19	0.95	1.41	1.64	0.47	225	320	100	0.1	-0.05	2.7
7.0	0.04	0.04	0.00	0.06	2.85	0.01	0.02	0.75	325	320	100	0.6	-0.15	5.2
10.0	0.34	0.34	0.00	0.43	3.66	0.22	0.28	1.23	325	320	100	0.2	-0.08	4.7
20.0	2.89	2.89	0.00	3.19	8.03	2.57	2.83	0.00	225	320	50	-0.0	-0.04	5.6

TABLE VIII: Table of maximum $R_{gg}^{h+A}(\gamma\gamma)$ values for the Type II 2HDM with $m_h = m_A = 125$ GeV and associated R values for other initial and/or final states. The input parameters that give the maximal $R_{gg}^{h+A}(\gamma\gamma)$ value are also tabulated.

Conclusions:

- theoretical constraints (SUP) very important
- \bullet easier to enhance R_{gg} for the type II model:

$$-\operatorname{R}_{\operatorname{ggmax}}^{\operatorname{h}^{1}\operatorname{type}\operatorname{II}}(\gamma\gamma)\leqslant 3,$$

$$-\operatorname{R}_{\operatorname{ggmax}}^{\operatorname{h}^{1}\operatorname{type}I}(\gamma\gamma) \leqslant 1.3,$$

• type II model implies too strong ZZ signal: $P^{h(H)}(x,y) \in P^{h(H)}(ZZ)$

$$R_{gg}$$
 $(\gamma\gamma) < R_{gg}$ (ZZ)

or too strong bb signal:

- $-\operatorname{R_{gg}^{h+A}(b\bar{b})} > 3.75 \text{ for } \operatorname{R_{gg}^{h+A}(\gamma\gamma)} > 1.3 > \operatorname{R_{gg}^{h+A}(ZZ)}$
- H^{\pm} effects up to $\sim 20\%$

Optimal signal for the type I model for tg $\beta = 4$, 20 within the scenarios: I (mh = 125 GeV) and IV (mh = mA = 125 GeV).

• light charged Higgs $\sim 90 \text{GeV}$

・ロト ・ 一下 ・ ト ・ ト・

Thank you for your attention

International PhD Projects Programme (MPD) - Grants for Innovations

EUROPEAN REGIONAL DEVELOPMENT FUND

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●