Measurement of elliptic and higher-order flow harmonics at $2.76 \mathrm{TeV} \mathrm{Pb+Pb}$ collisions with the ATLAS detector.

Dominik Derendarz for the ATLAS Collaboration Institute of Nuclear Physics PAN, Kraków, Poland

Azimuthal anisotropy in heavy ion collisions

Pressure gradients lead to azimuthal anisotropy

Fourier harmonics $v_{n}=\left\langle\cos \left(n\left(\Phi-\Psi_{n}\right)\right)\right\rangle$

- Initial shape of the interaction region (v_{2} - elliptic flow)
- Initial spatial fluctuations of interacting nucleons (higher orders, \mathbf{v}_{n})

ATLAS detector

Centrality determination

- Energy deposited in entire FCal ($3.1<|n|<4.9$) is used for centrality determination
- Event plane measurement is based on energy deposition in the first sampling layer of FCal
 is a composite tracking system consisting of silicon and gaseous detectors.

Three tracking techniques:

- ID tracks:
$p_{T}>0.5 \mathrm{GeV}$
- Pixel tracks:
$p_{T}>0.1 \mathrm{GeV}$
- Two point pixel tracklets (B-off): $\mathrm{p}_{\mathrm{T}}>0.03 \mathrm{GeV}$

Integrated v_{2} down to very low p_{T}

- Integrated v_{2} flow harmonic measured using the EP method
- Reaching low p_{T} reduces uncertainty on the integrated v_{2}

ATLAS-CONF-2012-117

ID tracks $p_{T}>0.5 \mathrm{GeV}$

Pixel tracks - varied lower integration p_{T} limit to link ID tracks and tracklets

Tracklets $p_{T}>0.03 \mathrm{GeV}$

Pseudorapidity dependence of integrated \mathbf{v}_{2}

- $\mathrm{v}_{2}(\mathrm{\eta})$ integrated over p_{T}, shows weak pseudorapidity dependence
- $\mathrm{v}_{\mathbf{2}}(\boldsymbol{\eta})$ scaling with $\boldsymbol{\eta}-\mathrm{y}_{\text {beam }}$ consistent with the trend observed by PHOBOS at RHIC (Phys.Rev.C72:051901,2005)

ATLAS-CONF-2012-117

Pseudorapidity dependence of \mathbf{v}_{2}

- No substantial η dependence for any p_{T} or centrality interval is observed (v_{2} drops by about 5-10\% over the range $|\eta|=0-2.4$)
- Different from PHOBOS measurements at RHIC in which v_{2} decreases by ~30\% within the same η range (PHOBOS Phys. Rev. C72 (2005) 051901)

Higher order flow harmonics - p_{T} dependence

- The p_{T}-dependence of $\mathrm{v}_{2}-\mathrm{v}_{6}$ for several centrality selections
- Similar p_{T}-dependence for all harmonics
- v_{n} generally decreases for larger n, except in the most central events:
- v_{3} dominates in p_{T} range ~2-7 GeV
$-\mathrm{v}_{4}>\mathrm{v}_{2}$ in p_{T} range $\sim 3-5 \mathrm{GeV}$

Two-particle correlation method

Two-particle correlation method

Two-particle correlation method

The two-particle correlation function: $C(\Delta \phi, \Delta \eta)=\frac{N_{s}(\Delta \phi, \Delta \eta)}{N_{m}(\Delta \phi, \Delta \eta)} \quad \begin{aligned} & \begin{array}{l}\mathbf{N}_{s}-\text { same event pairs } \\ \mathbf{N}_{\mathrm{m}}-\text { mixed event pairs }\end{array}\end{aligned}$

$\mathbf{v}_{\mathrm{n}, \mathrm{n}}$ are calculated via Discrete Fourier

$$
\text { Transform (DFT) : } \quad \sum_{m} \cos \left(n \Delta \phi_{m}\right) C\left(\Delta \phi_{m}\right)
$$

Two-particle correlation method

The two-particle correlation function: $C(\Delta \phi, \Delta \eta)=\frac{N_{s}(\Delta \phi, \Delta \eta)}{N_{m}(\Delta \phi, \Delta \eta)}$
N_{s} - same event pairs
\mathbf{N}_{m} - mixed event pairs

Projected onto $\Delta \varphi$
1D correlation function

$$
\frac{d N}{d \Delta \phi} \propto 1+2 \sum_{n} v_{n, n} \cos (n \Delta \phi)
$$

$\mathbf{v}_{\mathrm{n}, \mathrm{n}}$ are calculated via Discrete Fourier

$$
\begin{aligned}
& \text { Transform (DFT) : } v_{n, n}=<\cos (n \Delta \phi)>=\frac{\sum_{m} \cos \left(n \Delta \phi_{m}\right) C\left(\Delta \phi_{m}\right)}{\sum_{m} C\left(\Delta \phi_{m}\right)}
\end{aligned}
$$

It is expected that for flow modulations:

$$
v_{n, n}\left(p_{T}^{a}, p_{T}^{b}\right)=v_{n}\left(p_{T}^{a}\right) v_{n}\left(p_{T}^{b}\right)
$$

And for "fixed-pT" correlations:

$$
v_{n}=\sqrt{V_{n, n}}
$$

Two particle correlation vs EP results

$$
C(\Delta \Phi)=b^{2 \mathrm{PC}}\left(1+2 \mathrm{v}_{1,1}^{2 \mathrm{PC}} \cos \Delta \Phi+2 \sum_{n=2}^{6} v_{n}^{E P, a} v_{n}^{E P, b} \cos n \Delta \Phi\right)
$$

ATLAS, Phys. Rev. C 86, 014907 (2012)

$\Delta \phi$

- $b^{2 P C}$ average of the correlation function
- $\mathrm{v}_{1,1}{ }^{2 \mathrm{PC}}$ first harmonic from the 2PC analysis
- Other v_{n} components measured with the event plane method
- Correlation function reproduced very well
even harmonics contribution
odd harmonics
contribution

Elliptic flow with cumulant method

- Elliptic flow harmonics of charged particles obtained with the cumulant generating function method
(N. Borghini, P.M.Dinh and J.Y. Ollitrault Phys.Rev.C 64 (2001) 054901)

ATLAS-CONF-2012-118

- v_{2} measurement (e.g. with the Event Plane method) is distorted by non-flow effects (not related to initial geometry)
- Cumulants of multi-particle (>2) correlations eliminates non flow contributions

Comparison of $\mathrm{v}_{2}\{2\}, \mathrm{v}_{2}\{4\}$ and $\mathrm{v}_{2}\{E P\}$

- Strong reduction of v_{2} is observed by using four-particle cumulants
- $\mathrm{v}_{2}\{4\}$ consistent between ATLAS, ALICE and CMS
- The $\mathrm{v}_{2}\{E P\}$ lies between $\mathrm{v}_{2}\{2\}$ and $\mathrm{v}_{2}\{4\}$

ATLAS-CONF-2012-118

Elliptic flow fluctuations (cumulant method)

- Cumulant method provides a measure of elliptic flow event-by-event fluctuations (N. Borghini, P.M.Dinh and J.Y. Ollitrault Phys.Rev. C64 (2001) 054901)

$$
\frac{\sigma_{2}}{<\mathrm{v}_{2}>} \approx \sqrt{\frac{\mathrm{v}_{2}\{2\}^{2}-\mathrm{v}_{2}\{4\}^{2}}{\mathrm{v}_{2}\{2\}^{2}+\mathrm{v}_{2}\{4\}^{2}}}
$$

- For the 5-10\% centrality fluctuations independent of p_{T}
W. Broniowski, M. Rybczyński, P. Bożek arXiv:0710.5731
- For less central collisions $\sigma_{2} /\left\langle\mathrm{v}_{2}\right\rangle$ increases with p_{T}
- $\sigma_{2} /<v_{2}>$ agrees with the Glauber MC model prediction with the except of peripheral collisions
 centrality intervals

Summary

- ATLAS measured integrated v_{2} flow harmonic reaching very low p_{T}
- Differential v_{2} and higher order flow harmonics were measured with various methods in wide p_{T}, η and centrality range
- $\mathbf{v}_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{T}}\right)$ shows the same trends
- rise up to $\sim 3 \mathrm{GeV}$
- decrease within 3-8 GeV
- varies weakly at high p_{T}
- $\mathbf{v}_{\mathrm{n}}(\mathrm{\eta})$ remains approximately constant
- Relative fluctuations of elliptic flow from 2- and 4-particle cumulants are consistent with the Glauber MC model

p_{T} dependence of the \mathbf{v}_{2} of charged particles

- All centrality intervals shows:
- Rapid rise in $\mathrm{v}_{2}\left(\mathrm{p}_{\mathrm{T}}\right)$ up to $\mathrm{p}_{\mathrm{T}} \sim 3 \mathrm{GeV}$
- Decrease out to 7-8 GeV
- Weak p_{T}-dependence above 9-10 GeV
- The strongest elliptic flow at LHC is observed in centralities 30-50\%

Event plane determination

- Reaction plane (Ψ RP) is approximated by event plane ($\Psi_{\mathrm{n}}{ }^{\text {EP }}$) measured in FCal:

$$
\Psi_{n}^{E P}=\frac{1}{n} \tan ^{-1} \frac{\sum_{i} E_{T, i}^{\text {tower }} w_{i} \sin \left(n \phi_{i}\right)}{\sum_{i} E_{T, i}^{\text {tower }} w_{i} \cos \left(n \phi_{i}\right)}
$$

ATLAS, Phys. Rev. C 86, 014907 (2012)

- The event plane resolution correction factor R is obtained using two-sub event and various tree-subevent method
- Significant resolution for harmonics $\mathrm{n}=2$ - 6
- Resolution corrected harmonics:

$$
v_{n}=\left\langle\cos \left(n\left(\Phi-\Psi_{n}\right)\right)\right\rangle / R
$$

Comparison with ALICE and RHIC experiments

- All data sets are quite consistent for both low and high p_{T}

Higher order harmonics scaling

- Hydrodynamics model suggests scaling $\mathrm{v}_{4} \sim \mathrm{v}_{2}{ }^{2}$ (PHENIX PRL 105, 062301 (2010))
- The p_{T}-dependence of the $v_{n}{ }^{1 / n / v_{2}}{ }^{1 / 2}$ ($\mathrm{n}=3-6$) ratio for several centrality selections
- Weak p_{T}-dependence of the ratio except 5\% most central events
- Ratio for $\mathrm{n}=3$ systematically lower than for $n=4,5$

Two particle correlation vs EP results

Good agreement between both methods in the selected kinematical range ($p_{T} 1-3 \mathrm{GeV}, 2<|\eta|<5$)

