Cracow Epiphany Conference On the physics after the first phase of the LHC 7-9 January 2013, Cracow, Poland

Results on Heavy-Ion Physics with the CMS detector at LHC

Bożena Boimska National Centre for Nuclear Research

on behalf of the CMS Collaboration

CCMS with the second s

<u>Outline</u>

Introduction

Experimental results

- □ (Selected) PbPb results
 - Jet quenching
 - Quarkonium suppression
- First pPb results
 - Two-particle correlations

Summary

B. Boimska (NCBJ)

Introduction

Heavy-Ion data-takings

PbPb @ 2.76 TeV

 \square 2010 data: 8.7 µb⁻¹ 2011 data: 157.6 μb⁻¹

- Reference data
 - 2011 pp @ 2.76 TeV: 231 nb⁻¹
 - 2012 pPb @ 5.02 TeV 1.05 μb⁻¹ test run:

CMS ION LUMINOSITY 2011 and 2010

- <u>Trigger selections</u>: MinBias Trigger (coincidence of BSC or HF signals)
 - Photon Trigger
 - Jet Trigger
 - (Di)Muon Trigger

B. Boimska (NCBJ)

Introduction

<u>Centrality determination</u>

- Energy deposit in forward calorimeters (HF) used for centrality determination
- Distribution of the total HF energy used to divide the sample into centrality bins
- Collision centrality is related to geometrical quantities:
 - N_{part} number of participating nucleons
 - N_{coll} number of elementary NN collisions

Publications

Topics studied: HIN-10-004 (dijet imbalance): PRC 84 (2011) 024906 1. HIN-11-007 (Y2s/Y1s ratio): PRL 107 (2011) 052302 2. 3. HIN-10-005 (R_{AA}): EPJC 72 (2012) 1945 HIN-10-006 (quarkonia): JHEP 05 (2012) 063 4. 5. HIN-10-003 (Z): PRL 106 (2011) 212301 6. HIN-11-013 (dijets): PLB 712 (2012) 176 7. HIN-11-010 (γ -jet): PLB 718 (2013) 773 8. HIN-11-012 (high $p_T v_2$): PRL 109 (2012) 022301 9. HIN-11-002 (photons): PLB 710 (2012) 256 10. HIN-11-004 (jet FF): JHEP 10 (2012) 087 11. HIN-11-011 (Y): PRL 109 (2012) 222301 PLB 715 (2012) 66 12. HIN-11-008 (W): 13. HIN-10-001 ($dN_{ch}/d\eta$): IHEP 08 (2011) 141 14. HIN-11-003 ($dE_T/d\eta$): PRL 109 (2012) 152303 15. HIN-11-001 (correlations): JHEP 07 (2011) 076 16. HIN-11-006 (correlations): EPIC 72 (2012) 2012 17. HIN-12-015 (pPb ridge): PLB 718 (2013) 795 PRC accepted 18. HIN-10-002 (v_2 flow): Only some selected 19. HIN-11-009 (π^0 v₂) : PRL

■ 'bulk' observables

- 'hard' observables:
 - control probes

results presented today ...

- modified probes

B. Boimska (NCBJ)

Jet quenching

signature of QGP – J.D.Bjorken (1982)

Schematic view of jet production:

AA collision

Start with a study of nuclear modification factor – R_{AA} :

 $R_{AA} = \frac{\text{(yield in AA)}}{N_{COLL}(AA) \times \text{(yield in pp)}}$

 $\begin{array}{l} R_{AA} < 1 \hspace{0.1 cm} suppression \\ R_{AA} = 1 \hspace{0.1 cm} no \hspace{0.1 cm} modification \\ R_{AA} > 1 \hspace{0.1 cm} enhancement \end{array}$

Nuclear modification factor

Control probes do not interact strongly

Nuclear modification factor

Control probes do not interact strongly

Z W photons PAS-HIN-12-008 PLB 715 (2012) 66 PLB 710 (2012) 256

are not modified by the medium

Production scales with N_{coll} , $R_{AA} = 1$

Nuclear modification factor

Modified probes do interact strongly

B. Boimska (NCBJ)

Nuclear modification factor

Modified probes : charged hadrons and jets

Nuclear modification factor

Modified probes : charged hadrons and jets

Dijet events in PbPb collisions

Balanced jets

Unbalanced jets

Dijet p_T imbalance quantified by asymmetry ratio:

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

 $p_{T,1}$ - leading $p_{T,2}$ - subleading

<u>Dijet asymmetry A_J</u>

- PYTHIA+DATA

Dijet p_T imbalance (A_J) increases with collision centrality
Not reproduced by MC (PYTHIA+DATA)

B. Boimska (NCBJ)

Dijet azimuthal angle correlation

□ Dijets essentially back-to-back ($\Delta \phi \sim \pi$) for all centralities → Propagation of high p_T partons in dense nuclear medium does not lead to a strong angular decorrelation

B. Boimska (NCBJ)

Photon-jet events in PbPb collisions

energy \rightarrow analysis is biased

'Prompt' photon does not interact with the medium:

- provides initial parton direction
- provides initial parton p_T

Photon-jet events in PbPb collisions

Leading jet could also lose some energy \rightarrow analysis is biased

'Prompt' photon does not interact with the medium:

- provides initial parton direction
- provides initial parton p_T

Direct measurement of parton energy loss in the medium

Photon-jet angular correlation

Photon and jet are 'back–to–back' ($\Delta \phi_{ly} \sim \pi$), also for other centralities.

Photon-jet momentum balance

Direct measure of the jet energy loss is the ratio of jet to photon p_T :

Where does the missing p_T go?

Calculate "missing" $p_T^{||}$:

$$p_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{Tracks}} -p_{\mathrm{T}}^{\mathrm{Track}} \cos\left(\phi_{\mathrm{Track}} - \phi_{\mathrm{Leading Jet}}\right)$$

 $\hfill\square$ Calculate, and then sum, projections of p_T of all reconstructed charged tracks in the event onto leading jet axis

 \Box Average over events to obtain mean missing $< p_T^{||} >$

PRC 84 (2011) 024906

Integrating over all tracks in the final state the momentum balance is restored (•), independently of the dijet asymmetry.

PRC 84 (2011) 024906

Contributions of different p_T ranges:

High p_T (>8GeV/c) excess towards leading jet balanced by low p_T tracks (<8GeV/c) away from leading jet.

B. Boimska (NCBJ)

PRC 84 (2011) 024906

Radial dependence of the momentum balance:

In-cone excess of high p_T tracks is balanced by out-of-cone low p_T tracks. Momentum difference in the dijet is balanced by low p_T particles at large angles relative to the jet axis.

B. Boimska (NCBJ)

Is jet fragmentation affected?

Measure Fragmentation Functions to check if energy loss mechanisms modify fragmentation functions of the partons.

B. Boimska (NCBJ)

Jet fragmentation functions

B. Boimska (NCBJ)

Track p_T distributions in jets

Quarkonium suppression

signature of QGP - Matsui & Satz (1986)

Due to colour screening, quarkonia should 'melt' above a given temperature of the medium – depending on their binding energy.

Binding energies and radii for various quarkonium states:

state	J/ψ	χc	ψ(2S)
Mass(GeV)	3.10	3.53	3.69
∆E (GeV)	0.64	0.20	0.05
r _o (fm)	0.25	0.36	0.45

state	Y(1S)	Y(2S)	Y(3S)
Mass(GeV)	9.46	10.0	10.36
∆E (GeV)	1.10	0.54	0.20
r _o (fm)	0.28	0.56	0.78

Observation of the melting (yield suppression) of quarkonium states serves as a thermometer of the medium.

B. Boimska (NCBJ)

Dimuon spectrum

Quarkonium suppression

Y states and J/ψ dependence on centrality:

<u>Quarkonia melting map</u>

Centrality-integrated R_{AA} vs. binding energy:

Two-particle correlations

$$\Delta \eta = \eta^{assoc} - \eta^{trig}$$
$$\Delta \phi = \phi^{assoc} - \phi^{trig}$$

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 08.01.2013

Associated hadron yield per trigger:

 $\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$

Two-particle correlations

Unexpected "ridge" in high-multiplicity pp collisions

Two-particle correlations

Physical origin unclear: - Collective effect in pp?

- Initial-state gluon saturation (CGC) ?

B. Boimska (NCBJ)

pPb@5TeV: Multiplicity Evolution

pPb@5TeV: Multiplicity Evolution

pPb@5TeV: Multiplicity Evolution

Significant ridge-like structure observed in high-multiplicity (central) pPb collisions

B. Boimska (NCBJ)

Magnitude of the ridge in pPb much larger than in pp

Integrated associated yield

Similar behaviour as observed in pp – **but trends much stronger for pPb**

B. Boimska (NCBJ)

<u>Summary</u>

- CMS has a broad heavy-ion program
- In 2010 and 2011 a significant amount of PbPb data collected
- Our measurements indicate that the medium created:
 - Does not quench control probes (γ, W, Z)
 - □ Strongly quenches partons, including b-quarks
 - Causes dijet and photon-jet p_T imbalance, but does not modify their angular correlation
 - □ Modifies fragmentation functions of jets (enhancement at low p_T)
 - Suppresses quarkonia, including excited states of the Y

pPb collisions

- First result on ridge strong effect observed
- □ Looking forward to 2013 data ...

More results:

http://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Parton Fragmentation

Momentum Fraction

z=p^{hadron}/p^{parton}

$\xi = \ln(1/z)$ Representation:

B. Boimska (NCBJ)

Epiphany Conference, Cracow, 08.01.2013

Understanding the correlation function

Striking "ridge–like" structure extending over $\Delta \eta$

In <u>high-multiplicity</u> , $N \ge 110$ where:

 $N \equiv$ number of offline tracks with p_T>0.4 GeV/c

Understanding the correlation function

