

▲ロト ▲母ト ▲ヨト ▲ヨト 三国市 のへで

Electroweak physics, QCD and jets in the forward region

Nicola Chiapolini

on behalf of the LHCb collaboration

Epiphany Conference, 7.-9. January 2013

Introduction

- 2 pp \rightarrow Z $\rightarrow \ell^+ \ell^-$
- (3) $pp \rightarrow Z \rightarrow \mu^+\mu^-$ + Jets
- 5 Low Mass Drell-Yan
- 6 Conclusion

Further (QCD) Topics

• Measurement of the forward energy flow in pp collisions at $\sqrt{s} = 7$ TeV with the LHCb experiment

```
(arXiv:1212.4755 [hep-ex])
```

• Measurement of charged particle multiplicities in pp collisions at $\sqrt{s} = 7$ TeV in the forward region

```
(Eur. Phys. J. C 72 (2012) 1947)
```

• Measurement of the inclusive ϕ cross-section in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

```
(Phys. Lett. B 703 (2011) 267-273)
```

• Measurement of V^0 production ratios in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV

```
(J. High Energy Phys. 08 (2011) 034)
```

 Prompt K_s⁰ production in pp collisions at √s = 0.9 TeV

(Phys. Lett. B 693 (2010) 69-80)

The LHCb Detector

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

- Forward spectrometer, fully instrumented in $2 < \eta < 5$
- Trigger threshold: $M_{\mu\mu} > 2.5 \,\text{GeV}/c^2$

Data Taking

LHCb Integrated Luminosity pp collisions 2010-2012

Year \mathcal{L} E_{CM} 2010 37 pb⁻¹ 7.0 TeV 2011 1.1 fb⁻¹ 7.0 TeV 2012 2.1 fb⁻¹ 8.0 TeV

Average number of interactions constant in all 3 years (1.5)

Cross-Section Measurements

scattering process at LHC

- parton parton scattering described by perturbative QCD
- needs parton distribution functions
- parton distribution functions determined from measurements

$$\sigma_{AB\to X} = \int dx_a dx_b \cdot f_{a/A} f_{b/B} \cdot \hat{\sigma}_{ab\to X}$$

parton distribution function

parton parton scattering

Electroweak Measurements at LHCb

 $x_{a,b} = \frac{M}{\sqrt{s}} \cdot e^{\pm \eta}$ fraction of proton momentum carried by parton $Q^2 = M^2$ 4-momentum transfered

- LHCb probes two distinct regions in x/Q² plane
- unique region at low x down to $x = 8 \cdot 10^{-6}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$pp \to Z \to \ell^+ \ell^-$

 $Z
ightarrow \mu^+ \mu^-$

(JHEP 2012, 6 (2012), 58)

Nr. of Candidates 1966 Purity 99.7 %

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $Z \rightarrow e^+ e^-$

(arXiv:1212.4620 [hep-ex])

Data

• 2011 dataset $\mathcal{L} = 945 \, \text{pb}^{-1}$

Challenges

- Energy measurement
 - saturation in calo
 - bremsstrahlung
- QCD background
 - use same-sign data

Purity 9

95.5 %

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

 $Z
ightarrow au^+ au^-$

Data

• 2011 dataset $\mathcal{L} = 1 \text{ fb}^{-1}$

Challenges

- partial reconstruction of different final states
- many backgrounds

 $Z \rightarrow \tau^+ \tau^-$: Two Examples

(arXiv:1210.6289 [hep-ex])

 $Z \to \tau^+ \tau^- \to \mu^+ \mu^-$

 $Z \to \tau^+ \tau^- \to \mu h$

Nr. of Candidates 124 Purity 75% Nr. of Candidates 189 Purity 78%

Total Nr. of Candidates 990

Common Considerations

- All events triggered by single muon or single electron trigger
- Most efficiencies determined from data (tag & probe)
- Magnitude of most uncertainties dominated by statistics (most important for $Z \to \mu^+ \mu^-)$

Uncertainties [%]

	$Z \to \mu^+ \mu^-$	${\rm Z} \rightarrow e^+ e^-$	$Z \to \tau^+ \tau^-$
			(combined)
Statistic	2.2	1.1	4.9
Systematic	4.3	2.6	3.9
Luminosity	3.5	3.5	3.5

Differential Production Cross Sections

(JHEP 2012, 6 (2012), 58; arXiv:1212.4620 [hep-ex])

Compared to NNLO predictions (DYNNLO)

e⁺e⁻ Angular Result

(arXiv:1212.4620 [hep-ex])

Fixed Order (no soft gluons)

Resummation / Parton Shower

1= 900

Results: $\tau^+\tau^-$

(arXiv:1210.6289 [hep-ex])

$pp \rightarrow Z \rightarrow \mu^+ \mu^-$ + Jets

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

$Z \rightarrow \mu^+ \mu^-$ + Jets

(LHCb-CONF-2012-016)

Data

- 2011 dataset $\mathcal{L} = 1 \text{ fb}^{-1}$
- $Z \to \mu^+ \mu^-$ selection

Challenges

 jet reconstruction energy scale and resolution

(example of signal candidate)

The Jets

(LHCb-CONF-2012-016)

Definition

- anti- k_T clustering algorithm
- radius parameter R = 0.5

Selection

- p_T(jet) > 10 GeV/c
- 2.0 < η_{jet} < 4.5
- jet isolated from μ (R = 0.4)

Energy Calibration (dominant systematic uncertainty)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Normalized Z + Jet

Ζ

(LHCb-CONF-2012-016)

- measurement at hadron level
- predictions at parton level (order α_s^2)

Theory $0.212^{+0.006}_{-0.009}$ (PDF) ± 0.016 (scale)

$pp \to W \to \mu \, \nu$

 $W
ightarrow \mu \, \nu$

(JHEP 2012, 6 (2012), 58)

Data

- 2010 dataset $\mathcal{L} = 37 \, \text{pb}^{-1}$
- $2 < \eta_{\mu} < 4.5$
- *p*_T > 20 GeV/*c*

Challenges

- selection efficiencies
 - from data
 - using $Z \to \mu^+ \mu^-$ events with one μ removed
- backgrounds

Purity from Template Fit

(JHEP 2012, 6 (2012), 58)

	Shape	Normalisation		Cand	Durity [0/]
$W \to \mu \nu$	simulation	fit		Cano.	Punty [%]
K/ π decay in flight	data	fit	W^+	14660	78.8
$\gamma^*/Z ightarrow \mu^+\mu^-$	simulation	fixed	W^-	11618	78.4
$W \to \tau \; \nu, Z \to \tau^+ \tau^-$	simulation	fixed			
Heavy Flavour	data	fixed			

Production Cross Section and Ratios (JHEP 2012, 6 (2012), 58)

Compared to NNLO predictions (DYNNLO)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

Differential W Cross Section

(JHEP 2012, 6 (2012), 58)

As expected W⁻ production higher than W⁺ in forward region

Lepton Charge Asymmetry

(JHEP 2012, 6 (2012), 58)

$$\mathbf{A}_{\mu} = \frac{\sigma_{\mathbf{W}^{+} \to \mu^{+} \nu} - \sigma_{\mathbf{W}^{-} \to \mu^{-} \overline{\nu}}}{\sigma_{\mathbf{W}^{+} \to \mu^{+} \nu} + \sigma_{\mathbf{W}^{-} \to \mu^{-} \overline{\nu}}}$$

Precise measurement in good agreement with predictions

LHC Combination

(ATLAS-CONF-2011-129)

Low Mass Drell-Yan

(LHCb-CONF-2012-013)

LHCb preliminary $7.0 < M < 9.0 \text{ GeV/c}^2$ 2.0 < y < 4.5≌2400 F - 2010 data 2200Drell-Yan 2000 Upsilon Heavy Flavour 1800 Hadron mis-id 1600 1400 1200 E 1000 E 800 600 E 400 200 0 0.5 Minimum muon isolation muon isolation = $\frac{P_T^{\mu - in Jet}}{P_T^{full Jet}}$

Data

- 2010 dataset $\mathcal{L} = 37 \, \text{pb}^{-1}$
- $2 < \eta_{\mu} < 4.5$
- *p*_T > 3 GeV/*c*

Challenges

- $5 < M_{\mu\mu} < 120 \, {
 m GeV}/c^2$
- different backgrounds

Mass Bins

(LHCb-CONF-2012-013)

Introduction $pp \rightarrow Z \rightarrow \ell^+ \ell^ pp \rightarrow Z \rightarrow \mu^+ \mu^- + Jets$ $pp \rightarrow W \rightarrow \mu \nu$ Low Mass Drell-Yan Conclusion 31/33

Result

(LHCb-CONF-2012-013)

Also differential measurements in 5 dimuon rapidity-bins (for $M_{\mu\mu}$ in 10.5 - 20 GeV/ c^2 and 20 - 40 GeV/ c^2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary & Outlook

Summary

- LHCb: Unique kinematic range down to $x = 8 \cdot 10^{-6}$
- W/Z production at LHCb in agreement with NNLO predictions
- Ratio W⁺/W⁻ cross section: 1.7% uncertainty
- Measurement of low mass Drell-Yan production
- First measurements of Z + jet production

Outlook

- update remaining analyses with 2011 dataset($\mathcal{L} = 1.1 \text{ fb}^{-1}$)
- analyze 2012 dataset ($\mathcal{L} = 2.1 \text{ fb}^{-1}$ at 8 TeV)
- W and Z production in association with b and c jets

Thank you for your attention

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Systematic Uncertainties: Z + Jets

(LHCb-CONF-2012-016)

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

n Jets	0	1	2	\geq 3
Bin-to-Bin Migration	0.2	1.0	2.9	9.7
GEC and Trigger	0.3	0.9	1.5	3.8
μID	0.2	0.6	0.9	1.4
μ Tracking	0.5	1.3	4.0	3.6
Jet E Correction	1.0	2.6	7.0	11.0
Jet E Resolution	0.1	0.6	1.7	3.6
Jet ID	0.3	0.8	1.6	2.9
Total	1.2	3.4	9.1	16

All numbers in %

Source	$\Delta \sigma_{\mathrm{Z} ightarrow \mu^{+} \mu^{-}}$	$\Delta \sigma_{\mathrm{W}^+ ightarrow \mu^+ u}$	$\Delta \sigma_{W^- \rightarrow \mu^- \nu}$
Signal purity	0.1	1.2	0.9
Template shape	—	0.9	1.0
Efficiencies	4.3	2.2	2.0
Additional selection	_	1.8	1.7
FSR correction	0.02	0.01	0.02
Total	4.3	3.2	2.9
Luminosity	3.5	3.5	3.5

All numbers in %

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >