

Krzysztof Woźniak, IFJ PAN, Krakow for the ATLAS Collaboration

Study of the CQD phase diagram

Net baryon density

Properties of the strongly interacting Quark-Gluon Plasma created in PbPb collisions:

- the initial volume, its fluctuations and the evolution of the system (azimuthal correlations studies)
- interactions of the partons with the QGP (jets suppression, correlations with photons and Z bosons)

First results from pPb collisions - an outline

Nucleus-nucleus collision - definitions

Side view

Parameters describing the centrality of the collision:

- b geometrical impact parameter
- N_{part} number of nucleons participating in the collision
- N_{coll} number of nucleon-nucleon collisions
- centrality bin or class as percentage of the events, using an observable monotonically related to the above parameters

The ATLAS detector

Flow and other azimuthal correlations in PbPb collisions

Collective flow - definitions

Event plane method

$$\frac{dN}{d\phi} \sim 1 + 2\sum_{n=1}^{\infty} v_n(p_T, \eta) \cos\left(n(\phi - \Phi_n)\right)$$

$$v_n = \langle \cos(n(\phi - \Phi_n)) \rangle$$

Two-particle correlations method

$$\frac{dN}{d(\phi_a - \phi_b)} \sim 1 + 2\sum_{n=1}^{\infty} v_{n,n}(p_T^a, p_T^b) \cos\left(n(\phi_a - \phi_b)\right)$$

$$v_{n,n} = \langle \cos(n(\phi_a - \phi_b)) \rangle$$

for flow: $v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$

Cumulants from 2k-particle correlations

$$\langle corr_n \{ 2k \} \rangle = \langle exp(in(\phi_1 + ... + \phi_k - \phi_{k+1} + ... + \phi_{2k})) \rangle$$

Dependence on pseudorapidity

Elliptic flow:

- increases for peripheral collisions
- only weakly depends on pseudorapidity for all centralities

ATLAS-CONF-2012-117.

Dependence on pseudorapidity

ATLAS observes small (~10%) variation of the elliptic flow in $|\eta|$ <2.5 range but these results are not contradicting triangular shape of pseudorapididty dependence observed at RHIC.

ATLAS-CONF-2012-117. PHOBOS, Phys. Rev. Lett. 94 (2005) 122303.

Collective flow - elliptic flow v_2

Elliptic flow η distribution shifted by the rapidity of the beam scales in the collision energy range from 19 to 2760 GeV

ATLAS-CONF-2012-117. PHOBOS, Phys. Rev. Lett. 94 (2005) 122303.

Dependence on the collision energy

Elliptic flow values moderately increase in the collision energy range from 10 to 2760 GeV.

At lower energies, when the interactions involving spectator parts of the nuclei are important, v_2 is changing rapidly, from positive to negative and then again to positive values.

ATLAS-CONF-2012-117.

Comparison of flow harmonics

- v₂ is much larger than v₃ for 5-95% centrality range, it drops fast for the most central events
- generally v_n values decrease with increasing n
- v_n weakly depends on centrality for n=3-6
- maximum of the distribution decreases with n (for n>2)

 v_2 reflects the degree of elongation of the interaction area, while the higher harmonics result from fluctuations of it

more details on flow harmonics in the talk by **Dominik Derendarz**

ATLAS, Phys.Rev C 86 (2012) 014907.

Comparison of flow harmonics

event plane method

ATLAS, Phys.Rev C 86 (2012) 014907.

Elliptic flow v2

- rapid rise to p_τ ~ 2-3 GeV (hydrodynamic expansion)
- decrease in the p_T range 3-8 GeV (coalescence)
- weak dependence at high p_τ (jet quenching)

Higher harmonics

- shape of v_n distributions similar for n=2-6
- maximum of the distribution decreases with n (for n>2)

Collective flow - v₁

ATLAS, Phys.Rev C 86 (2012) 014907.

 centrality dependence much weaker (~10% change of the maximum) than for v₂, v₃

Collective flow - fluctuations

Event-by-event flow harmonics distributions

Collective flow from cumulants

Elliptic flow from cumulants

v₂{4} cumulant from four-particle correlations, in which effects from two-particle correlations are cancelled, is significantly smaller than v_{2} from two-particle correlations or from event plane method

more details on flow cumulants in the talk by **Dominik Derendarz**

Elliptic flow fluctuations from cumulants

- fluctuations averaged over p₁
- centrality dependence of fluctuations compared with predictions from the Glissando **Glauber MC model** (W. Broniowki, M. Rybczynski, and P. Bozek, arXiv:0710.5731 [nucl-th])
- fluctuations obtained from cumulants provide an upper limit, as the v_2 {2} contains also non flow fluctuations.

o ^ S |^~ |>0.8 ····· Glauber MC Gaussian distribution ($\sqrt{4/\pi}$ -1) 0.6 0.4 **ATLAS** Preliminary 0.2 0.5 < p_ < 12 GeV |ŋ|<1 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% centrality intervals

ATLAS-CONF-2012-118.

16

Jets in PbPb collisions

Jets in PbPb collisions

First result in 2010 - disappearance of one of jets

events with a single high energy jet in the most central PbPb collisions

Quantitative description of the jet suppression using dijet energy asymmetry

$$A_{J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$$

Asymmetry of jet energy in PbPb collisions at 2.76 TeV:

- in peripheral collisions is similar to that in pp collisions
- becomes much larger for more central events
- angular correlations do not depend on centrality

ATLAS, Phys. Rev. Lett. 105 (2010) 252303. ATLAS-CONF-2011-075.

Jets

Jet Suppression

- jets are produced in pairs from energetic partons emerging from hard collisions of quarks or gluons
- in the strongly interacting matter created in PbPb collisions they loose energy depending on the traversed path length
- this effect can be observed also using particles with high transverse momenta

Questions:

- both partons are affected: what fraction of energy is lost by each parton on average?
- how the energy loss depends on the traversed path length?
- is the fragmentation of jets modified?
- what are the suppression patterns of jets with heavy quarks, of photons and electroweak bosons?

Central to peripheral ratio

$$R_{CP} = \frac{\frac{1}{N_{coll}^{centr}} \frac{1}{N_{ev}^{centr}} \frac{dN_{jet}^{centr}}{dp_{T}}}{\frac{1}{N_{coll}^{60-80\%}} \frac{1}{N_{ev}^{60-80\%}} \frac{dN_{jet}^{60-80\%}}{dp_{T}}}{dp_{T}}}$$

- in the most central sample the jet yields are 2 times smaller than in peripheral collisions
- weak dependence on jet $\mathbf{p}_{_{\mathrm{T}}}$

ATLAS, arXiv:1208.1967 hep-ex.

Jet suppression - path length dependence

Azimuthal angle dependence

reflecting the path length dependence

$$R_{\Delta\phi} = \frac{\frac{d^2 N_{jet}}{d p_T d(\Delta\phi)} (\Delta\phi)}{\frac{d^2 N_{jet}}{d p_T d(\Delta\phi)} (\Delta\phi < \pi/8)}$$

 $\Delta \phi$ - the angle between a jet and the event plane

yields reduced by about 15% for $3\pi/8 < \Delta \phi < \pi/2$ relative to $0 < \Delta \phi < \pi/8$

ATLAS-CONF-2012-116.

Central to peripheral ratio for different jet sizes

Dependence of jet suppression on the jet size parameter - largest suppression for jets with smallest size.

Energy of the jet is partially recovered by increasing the jet size.

ATLAS, arXiv:1208.1967 hep-ex.

Fragmentation function

$$z = \frac{p_T^{ch}}{p_T^{jet}} \cos(\Delta R)$$

 ΔR represents the angle between particle and jet direction

$$R_{D(z)} = \frac{D(z)_{centr}}{D(z)_{60-80\%}}$$

- no change for $z \approx 1$
- R<1 for 0.05<z<0.2
- R>1 for z<0.03

ATLAS-CONF-2012-115.

$$Muon R_{CP}$$

$$R_{CP} = \frac{\frac{1}{N_{coll}^{centr}} \frac{1}{N_{ev}^{centr}} \frac{dN_{\mu}^{centr}}{dp_{T}}}{\frac{1}{N_{coll}^{60-80\%}} \frac{1}{N_{ev}^{60-80\%}} \frac{dN_{\mu}^{60-80\%}}{dp_{T}}}$$

Muons in the 4 < pT < 14 GeV range used in this analysis originate in 99% from semi-leptonic decays of c and b quarks.

Suppression by a factor of 2 between 0-10% and 60-80% centrality, weaker than for charged hadrons and similar to jets suppression.

ATLAS-CONF-2012-050.

Photons and Z bosons

Photons and Z bosons

- matter created in the heavy collisions strongly interacts with energetic partons (quarks and gluons) created in hard processes, but photons and products of leptonic decays of Z bosons penetrate it freely and leave it unaffected
- momenta of "penetrating probes" can be used as a measure of the initial momentum of associated jets

ATLAS-CONF-2012-050.

Photons

Photon-jet correlations

pair: photon - jet produced in the processes:

 $qg \rightarrow q\gamma$ or $qq \rightarrow g\gamma$

E_y 60-90 GeV, $|\eta| < 1.2$ y-jet separation $\Delta \phi > 7\pi/8$

$$X_{J_{\gamma}} = \frac{p_T^{jet}}{p_T^{\gamma}}$$

correlations similar to PYTHIA predictions in peripheral collisions momenta of jets shifted to lower values in the central collisions

ATLAS-CONF-2012-051.

Z boson

Z boson - jet correlations

 p_{T} of the Z boson used as a measure of the original momentum of the jet

the final p_T of jet is lower than predicted by PYTHIA model (without jet energy loss) and indicates the level of jet suppression

lower statistics than for photon-jet correlations, but the same trend

ATLAS-CONF-2012-119.

pPb collisions

"Ridge" in two-particle correlations in pPb collisions

$$C(\Delta \phi, \Delta \eta) = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}$$

two distinct centralities of pPb collisions, selected by E_T ranges: peripheral $\sum E_T < 20 \text{ GeV}$ central $\sum E_T > 80 \text{ GeV}$

per trigger yield $Y(\Delta \phi) = \left(\frac{\int B(\Delta \phi) d(\Delta \phi)}{\pi N_a}\right) C(\Delta \phi) - b_{ZYAM}$

B($\Delta \phi$, $\Delta \eta$) and C($\Delta \phi$, $\Delta \eta$) are integrated in the range **2** < | $\Delta \eta$ | < **5**

Difference between points for large and small $\sum E_{T}$ is similar near $\Delta \phi = 0$ and $\Delta \phi = \pi$

29

"Ridge" in two-particle correlations in pPb collisions

Subtraction of recoil contribution

"Ridge" in two-particle correlations in pPb collisions

Difference of per trigger yields

Summary

Azimuthal correlations in PbPb collisions

- measurements of flow harmonics v_n, n=1, ..., 6
- > ($|\eta|$ <2.5, p_T > 0.03 GeV)
- cumulant harmonics v₂{2} and v₂{4}
- cumulants and event-by-event harmonics used to quantify flow fluctuations and in comparisons with models

Jets in PbPb collisions

- suppression of jet yields in central collisions by a factor of 2
- > 15% difference of jet suppression for jets perpendicular and parallel to event plane
- jet size dependence of suppression
- jet fragmentation independent of centrality for large z, but shows suppression at z=0.1 and enhancement for very low z

Studies of high- p_{τ} particles

- > from muons analysis suppression for c and b quarks similar to all jets
- > no suppression for photons and Z bosons
- > momentum of jets correlated with y or Z bosons shifted to lower values

New results from pPb collisions

in the central events a $\cos(2\Delta\phi)$ modulation component extracted from two-particle correlations

Backup

Charged particle R_{cp}

Charged particle yield ratios in PbPb collisions at 2.76 TeV:

- R_{CP} drops between 2-7 GeV to the values observed at RHIC
- above 7 GeV R_{CP} increases reaching 0.5 for the most central collisions

PHENIX, Phys. Rev. C69 (2004) 034910.

ATLAS-CONF-2011-079.

34

The ATLAS detector

The ATLAS detector

Centrality of PbPb collisions

Distribution of the signals registered in the Forward Calorimeter (FCal) is divided into bins with the same number of events (10% of the total).

Fraction of the sampled non-Coulomb inelastic cross section after all trigger selection cuts is estimated to be 100% \pm 2%

Krzysztof Wozniak, Latest QCD results in p+p and Pb+Pb collisions from ATLAS, Excited QCD 2012

Centrality dependence

Integrated elliptic flow:

- is small for central collisions (almost complete overlap area symmetric shape)
- grows for peripheral collisions (overlap area - almond shape)

Integrated flow depends on transverse momentum cut (ATLAS has measured flow for particles with very small transverse momenta $p_T > 0.03$ GeV)

ATLAS-CONF-2012-117.

Dependence on transverse momentum

- rapid rise to p_τ ~ 2 GeV (hydrodynamic expansion)
- a maximum at $p_{\tau} \sim 3 \text{ GeV}$
- decrease in the p_{τ} range 3-8 GeV (coalescence)
- weak dependence at high p_T (jet quenching)

Similar dependence at LHC and RHIC energies

- in the most central events, elliptic flow fluctuations independent of p_τ;
 for other centralities weak dependence for p_τ<2 GeV
- largest relative fluctuations are observed for the most peripheral and the most central events

ATLAS-CONF-2012-118.

- fluctuations averaged over p_T
- centrality dependence of fluctuations compared with predictions from the Glissando Glauber MC model (W. Broniowki, M. Rybczynski, and P. Bozek, arXiv:0710.5731 [nucl-th])
- fluctuations obtained from cumulants provide an upper limit, as the v₂{2} contains also non flow fluctuations.

ATLAS-CONF-2012-118.

Collective flow - event plane correlations

 $\boldsymbol{\Phi}_2$

Correlations between 2 or 3 event planes for flow harmonics are sensitive to non linear response of the medium to initial fluctuations

Jets - v₂

v₂ for jets

Photons

good agreement of the yields in PbPb collisions scaled by T_{AA} with the expectations from JETPHOX model.

No indication of suppression.

ATLAS-CONF-2012-051.

Z boson yields

Calculated using Z boson candidates: 772 in Z \rightarrow ee channel 1223 in Z \rightarrow µµ channel

within the measurement uncertainties, Z boson yields are proportional to the number of nucleon-nucleon collisions

No indication of suppression

