Standard Model physics with taus in the final states in ATLAS

Anna Kaczmarska IFJ PAN, Kraków On behalf of the ATLAS Collaboration

Cracow Epiphany Conference 7-9 January 2013

Why are we interested in τ leptons?

 τ leptons play an important role in the ATLAS physics program as they provide an important signature in searches for the Standard Model Higgs boson and new phenomena in a wide range of theoretical models

see talks by: Philipp Fleischmann Juan Antonio Valls Ferrer Tuan Vu Anh Michiru Kaneda

- Standard Model processes with τ in final states are
 - interesting themselves as measured for the first time at so high energy
 - important as they are backgrounds for new physics searches
 - the key to understand τ reconstruction/identification performance of the detector

• This talk covers

- W/Z/t \bar{t} cross section measurements with τ leptons
- estimation of τ identification efficiency with $W \rightarrow \tau v$ and $Z \rightarrow \tau \tau$ events
- τ polarization studies with $W{\rightarrow}\tau v$ process

Results for p+p at $\sqrt{s} = 7$ TeV

Anna Kaczmarska, IFJ PAN

Properties of τ leptons

Since leptonic τ decays are difficult to distinguish from prompt e/μ , the τ identification algorithms deal only with the visible part (without the neutrino) of the hadronic τ decay modes.

Most important decay modes				
Decay Mode	Branching Fraction			
Leptonic modes ~35%				
τ⁺→e⁺ν _e ν _τ	18%			
τ≛→μ≛ν _μ ν _τ	17%			
Hadronic modes ~65%				
1 prong (1 charged particle)	46%			
τ±→π±ν _τ	11%			
τ±→π±π⁰ν _τ	26%			
τ±→π±π ⁰ π ⁰ ν _τ	9%			
3 prong (3 charged particles)	14%			
τ±→π±π±π [∓] ν _τ	9%			
τ±→π±π±π [∓] π⁰ν,	5%			

Main sources of fake taus

QCD jets

- 1 or 3 trackssmall invariant mass of
- decay products
- have secondary vertex

- Electrons
- Muons

Main challenge: separate out a clean sample of τ leptons from the overwhelming QCD jet rate!

- wide
- can have many tracks
- large invariant mass of decay products
- come directly from primary vertex

Electrons and muons can also be misidentified as 1-prong τ candidates. Separate algorithms are developed in order to reject them.

Anna Kaczmarska, IFJ PAN

Epiphany, 7-9 January, 2013

Two steps to find τ candidates

Reconstruction

- Building of a τ candidate starts from reconstructed jets
- Tracks satisfying dedicated selection are associated to τ candidates
 - additional algorithm is used to find the primary vertex from which τ originates and tracks are selected with respect to it
 - smaller degradation due to pile-up
- Final energy of τ candidates is obtained using dedicated MC-based calibration
- Identification variables are calculated from the tracking and calorimetric information

Identification

- Aimed to distinguish between QCD jets/electrons/muons and τ leptons
- Variables based on τ decay properties are combined into various (multivariate) discriminants to reject fake τ candidates
- Cut on the output of the discriminants is used to select a sample of τ candidates with the desired level of background rejection and signal efficiency

$\boldsymbol{\tau}$ identification methods

- Two algorithms used to identify hadronic τ's and reject QCD jets: boosted decision trees (BDT) and a log-likelihood (LLH).
- Threshold on their values is calculated as a function of $p_T(\tau)$, wrt number of vertices reconstructed in the event and separately for one-prong and multi-prong τ candidates
- The cut-based/BDT algorithms used to reject electrons and muons faking τ candidates

Rejection= (# of reconstructed τ candidates)/ (# of reconstructed τ candidates passing identification)

For τ efficiency of 96% ~55% of muons misidentified as τ candidates are rejected (wrt τ identification, electron veto and overlap removal with identified muons)

Anna Kaczmarska, IFJ PAN

Epiphany, 7-9 January, 2013

ATLAS-CONF-2012-142

$Z \rightarrow \tau \tau$ cross section measurement

ATLAS-CONF-2012-006

• 3 final states: $\tau(e)\tau(had)$, $\tau(\mu)\tau(had)$, $\tau(e)\tau(\mu)$

• Triggers:

- isolated muon for $\tau(\mu)\tau(had)$ and $\tau(e)\tau(\mu)$
- combined τ and electron for $\tau(e)\tau(had)$

Background estimation

- QCD, W,Z->II (I=e,μ): main backgrounds partially or fully data driven
- tT, dibosons: MC
- Dominant systematics: energy scale 8%, electron 6% and τ 5% identification

 $\sigma(Z \rightarrow \tau \tau, 66 < m_7 < 116 \text{ GeV}) =$

Theoretical expectation:

0.96 ± 0.05 nb at NNLO

$W \rightarrow \tau v$ cross section measurement

Phys.Lett. B706 (2012)

τ identification efficiency measurement

ATLAS-CONF-2012-142

- Three τ efficiency measurements in data with tag-and-probe method:
 - two using Z-> $\tau(\mu)\tau(had)$ events,
 - one using W-> τ (had)v events,

tag: muon passing single muon trigger tag: event passes E_T^{miss} trigger

- Probe: hadronically decaying τ
- τ efficiency = fraction of probes passing τ identification
- Fraction of real and misidentified τ candidates is estimated from the fit of the track multiplicity distribution of the probe τ or from a two-dimensional side-band extrapolation
- τ efficiency data/MC scale factors consistent with 1

τ	identification	τ efficiency (data) data	data/MC scale factor	
HI.	BDT loose	0.73 ± 0.03(stat) ± 0.04(syst) 0.96	± 0.04(stat) ± 0.05(syst)	
	BDT medium	0.59 ± 0.02(stat) ± 0.03(syst) 0.93	± 0.04(stat) ± 0.04(syst)	
	BDT tight	0.37 ± 0.01(stat) ± 0.01(syst) 0.99	± 0.04(stat) ± 0.03(syst)	
	LLH loose	0.79 ± 0.05(stat) ± 0.04(syst) 0.93	± 0.06(stat) ± 0.05(syst)	
Post	LLH medium	0.70 ± 0.03(stat) ± 0.03(syst) 0.97	± 0.04(stat) ± 0.05(syst)	
745	LLH tight	0.46 ± 0.02(stat) ± 0.03(syst) 0.96	± 0.05(stat) ± 0.06(syst)	

from W-> t(had)v events

Measurement of tt production cross section

Top quark pairs are produced in abundance at the LHC

 makes it possible to study experimentally challenging decay channels and topologies

- $t\bar{t}$ cross section measurement in the final state with τ leptons
 - makes it possible to probe flavor dependent effects in top quark decays
 - important to complete a high-precision measurement of the top-decay branching ratio under the SM
 - relevant to searches for new physics processes, in particular for H[±] production in top quark decays or RPV SUSY → enhancement in the tt cross section
- Two final states studied
 - hadronically decaying τ and jets, $t\bar{t} \rightarrow [b\tau(had)][bqq]$, ~10% of all $t\bar{t}$ decays
 - analyzed data: 1.67 fb⁻¹ arXiv:1211.7205, submitted to EPJC
 - hadronically decaying τ and lepton, **tt** \rightarrow [**b** τ (had)][**be**/ μ v], ~5% of all tt decays
 - analyzed data: 2.05 fb⁻¹

Phys. Lett. B 717 (2012)

tt cross section: τ (had) + jets final state

b-jet trigger: at least 4 jets with 2 identified as b-jets

Dominant backgrounds: QCD multijets, top-pairs with different final state or wrong τ candidate

Method: number of charged tracks associated to a jet (ntrack) is used to separate τ and backgrounds

- can be used as a cross-check/calibration to standard τ identification
- Fit **ntrack** to extract number of τ and electron events
 - ntrack shapes estimated from data for the main backgrounds: QCD multijets (Gluon-jets) and tr with quark- jets misidentified as τ (Quark-jets)
- Subtract remaining, small EW backgrounds (W+jets, single top) using MC predictions
- Number of τ events obtained by using the expected ratio (from MC) of τ 's and electrons passing the selection in the t \overline{t} sample Systematics: TSD/FSD modeling 15% event $\sigma(t\overline{t}) = 194 \pm 18(stat) \pm 46(syst) pb$

Systematics: ISR/FSR modeling 15%, event generator 11%, b-tagging efficiency 9%

Hathor 1.2 M. Aliev et al., Comput. Phys. Commun. 182, 1034 (2011)

Theoretical expectation: **167**⁺¹⁷₋₁₈ pb

arXiv:1211.7205, submitted to EPJC

tt cross section: τ (had) + leptons final state

Two final states considered:

- $e + \tau$ selected with single-electron trigger
- $\mu + \tau$ selected by single-muon trigger At least one jet identified as b-jet required Main background: $t\bar{t} \rightarrow e/\mu + jets$

Method: $\boldsymbol{\tau}$ identification BDT algorithm is used

- Focus on OS-SS events: charges of e/μ and τ with opposite sign – same sign
 - OS-SS -> to cancel the contribution from charge-symmetric gluon-fakes (QCD)

Phys. Lett. B 717 (2012)

- Number of τ leptons (signal) is extracted by fitting distribution of OS-SS BDT output with signal (MC) and background templates (data driven)
- Results combined for 1-prong and multi-prong τ candidates and for e and μ final states

Systematics: b-tag ~8%, ISR/FSR ~4%, τ identification ~3%

 $\sigma(t\overline{t}) = 186\pm13(stat)\pm20(syst)\pm7(lumi) \text{ pb}$

Theoretical expectation: 164 +11 -16 pb

Anna Kaczmarska, IFJ PAN

Hathor 1.2 M. Aliev et al., Comput. Phys. Commun. 182, 1034 (2011)

τ polarization

 τ polarization (P_{\tau}) is a measure of the asymmetry of the cross section for left-handed and right-handed $\tau's$

•Ability to measure τ polarization allows for	
 tests of Standard Model predictions 	
· · · · · · · · · · · · · · · · · · ·	

- constraints on new models, for example Z' and W' degree of parity violation varies between models
- rejection of irreducible background (W from H[±])

1	Process	Ρτ	
K	₩→τν	-1	
P	Ζ→ττ	-0.15	
	Η→ττ	0	
2	MSSM $H^- \rightarrow \tau \nu$	+1	

Angular distribution of the τ decay products depends on the spin orientation of τ lepton
 hadronic τ decays are particularly useful due to presence of only one neutrino
 Observable: charged asymmetry γ -> ρ meson polarization analyzer

Measurement of τ polarization

Eur.Phys.J. C72 (2012) 2062

- Studied with $W \rightarrow \tau v$ events and with 24 pb⁻¹ of data
- First measurement of τ polarization at hadron colliders and at Q² = m_W^2
- The charged asymmetry is measured in all of the decay modes to a single charged meson
- Event selection and background estimation as for $W \rightarrow \tau v$ cross section measurement

• τ polarization measured from fit of the observed charged asymmetry distribution to linear combination of templates prepared with the left-handed and right-handed τ MC samples (+ QCD multijet data)

Summary

- ATLAS has an extensive physics program with τ leptons
- Large variety of τ Standard Model physics analyses being held in ATLAS
- τ reconstruction and identification well understood
- Measured cross section of W/Z/tT in good agreement with theory NNLO predictions
- Standard Model channels provide a tool for τ identification measurements
- Performed the first measurement of τ polarization at hadron collider and the first direct measurement of helicity structure at $Q^2 = m_W^2$
 - small statistical and systematic uncertainties of the measurement demonstrate the method potential

Anna Kaczmarska, IFJ PAN

16 / 15

Epiphany, 7-9 January, 2013

TO / TO

Anna Ruczmarska, IFJ FAIN

Epipriary, 7-9 January, 2013

Tau Jet Vertex Association (TJVA)

For each tau candidate a vertex candidate with the highest Jet Vertex Fraction (f_{JVF}) is found and used as a primary vertex

$$f_{\text{JVF}}(\text{jet}|\text{vtx}) = \frac{\sum p_T^{\text{trk}|\text{vtx}}}{\sum p_T^{\text{trk}}}$$

- Track selection is done with respect to it
- With Tau Jet Vertex Association (TJVA), tau candidate track multiplicity is less sensitive to pile-up and a smaller degradation in efficiency is observed as pile-up increases

Tau Energy Scale

ATLAS-CONF-2012-064

•Topological clusters calibrated using local hadron calibraton (LC)

• LC accounts for

- Non-compensation of calorimeters
- Energy deposited outside the reconstructed cluster
- Dead material
- LC weights derived from MC
- Additional corrections applied to restore true tau energy value (TES)
- Uncertainty on TES
 - 3 5% depending on eta and prong of tau
- Reduced uncertainty due to inclusion of
 - particle responses from isolated single hadrons and combined test beam data instead of MC samples

Tau Identification

Tau Identification

Tau Identification Variables (against QCD jets) (1)

Anna Kaczmarska, IFJ PAN

23 / 15

Epiphany, 7-9 January, 2013

Tau Identification Variables (against QCD jets) (2)

Anna Kaczmarska, IFJ PAN

24 / 15

Epiphany, 7-9 January, 2013