Cracow Epiphany Conference 7th-9th January 2013

SM Higgs Searches in ATLAS

Philipp Fleischmann Universität Würzburg

On behalf of the ATLAS Collaboration

Outline

-Introduction -SM Higgs at the LHC -The ATLAS Detector -Higgs Decay Channels discussed here $-H \rightarrow bb$ $-H \rightarrow \tau \tau$ $-H \rightarrow \gamma \gamma$ $-H \rightarrow \gamma \gamma$ $-H \rightarrow WW$ $-H \rightarrow ZZ$

Conclusion and outlook

Higgs Production at the LHC

•gg-Fusion dominating at LHC

•VBF, VH, ttH easier to trigger

•Reach up to masses of 1TeV

•Here concentrating on low values

•Slopes slightly different at √s=8TeV

•General picture remains unchanged

Higgs Decay Modes

Several decay modes accessible

 Importance depends on m_H

 At low Higgs masses

 H→bb dominating

 At higher masses

 WW and ZZ have higher BR

 To find experimental importance

 Combine crosssection and BR
 Take final states into account
 Analyse background processes

The ATLAS Detector

 Magnets **2**T Solenoid: 0.5T Toroid (barrel): Toroid (endcap): 1T Tracker **•**σ(p_T)/p_T ≈ 0.05% p_T ⊕ 1% ECAL • $\sigma(E)/E \approx 10\% / \sqrt{E} \oplus 0.7\%$ HCAL • $\sigma(E)/E \approx 50\% / \sqrt{E} \oplus 3\%$ Muon Spectrometer • $\sigma(p_T)/p_T \approx 2\%$ @ 50GeV •o(p_T)/p_T ≈ 10% @ 1TeV Trigger ■3 | evels: $40MHz \rightarrow 200Hz$

ATLAS Collaboration JINST 3 (2008) S08003

Higgs Searches in ATLAS

Summary of latest results in all channels

Channel	Conference note	L (fb ⁻¹)	Date	Publication	L (fb ⁻¹)	Date
SM H combination	ATLAS-CONF-2012-170	4.9+13.0	Dec 2012	arXiv:1207.7214	4.9+5.9	Jul 2012
SM H to ZZ(*) to 4I	ATLAS-CONF-2012-169	4.8+13.0	Dec 2012	arXiv:1202.1415	4.8	Feb 2012
SM H to diphoton	ATLAS-CONF-2012-168	4.9+13.0	Dec 2012	arXiv:1202.1414	4.9	Feb 2012
LFV Charged Higgs	-	4.7	Dec 2012	Paper	4.6	Feb 2012
SM H couplings	ATLAS-CONF-2012-127	4.9+5.9	Sep 2012	-	-	-
SM H combination	ATLAS-CONF-2012-162	4.9+13.0	Nov 2012	arXiv:1207.7214	4.9+5.9	Jul 2012
SM H to diphoton	ATLAS-CONF-2012-091	4.9+5.9	Jul 2012	arXiv:1202.1414	4.9	Feb 2012
SM H to ZZ(*) to 4I	ATLAS-CONF-2012-092	4.8+5.8	Jul 2012	arXiv:1202.1415	4.8	Feb 2012
SM H to WW to IvIv SM H to WW to IvIv (MVA)	ATLAS-CONF-2012-158 ATLAS-CONF-2012-060	4.7+13.0 4.7	Nov 2012 Jun 2012	arXiv:1206.0756	4.7	Jun 2012
SM WH, H to WW	ATLAS-CONF-2012-078	4.7	Jul 2012	-	-	-
SM H to tautau	ATLAS-CONF-2012-160	4.7+13.0	Nov 2012	arXiv:1206.5971	4.7	Jun 2012
SM VH, H to bb	ATLAS-CONF-2012-161	4.7+13.0	Nov 2012	arXiv:1207.0210	4.7	Jun 2012
SM ttH, H to bb	ATLAS-CONF-2012-135	4.7	Sep 2012	-	-	-
SM H to ZZ to Ilvv	ATLAS-CONF-2012-016	4.7	Mar 2012	arXiv:1205.6744	4.7	May 2012
SM H to ZZ to IIqq	ATLAS-CONF-2012-017	4.7	Mar 2012	arXiv:1206.2443	4.7	Jun 2012
SM H to ZZ to Ilqq Low Mas	ATLAS-CONF-2012-163	4.7	Nov 2012	-	-	-
SM H to WW to lvqq	ATLAS-CONF-2012-018	4.7	Mar 2012	arXiv:1206.6074	4.7	Jun 2012
Higgs in SM with 4th fermion generation	ATLAS-CONF-2011-135	1.0-2.3	Aug 2011		-	-
Fermiophobic H to diphoton	ATLAS-CONF-2012-013	4.9	Mar 2012	arXiv:1205.0701	4.9	May 2012
MSSM neutral H	ATLAS-CONF-2012-094	4.7	Jul 2012	arXiv:1107.5003	0.036	Jul 2011
MSSM H+ to taunu	ATLAS-CONF-2012-011	4.7	Mar 2012	arXiv:1204.2760	4.6	Apr 2012
MSSM H+ to csbar	ATLAS-CONF-2011-094	0.035	Jul 2011	-	-	-
NMSSM a1 to mumu	ATLAS-CONF-2011-020	0.037	Mar 2011	-	-	-
NMSSM H to a0a0 to 4photons	ATLAS-CONF-2012-079	4.9	Jul 2012	-	-	-

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

 Many analyses

 Too much to present today

 All results online

 Some examples presented now

$H \rightarrow bb$

 Highest branching ratio at low masses m_H Associated production ttH and VH •Lower cross section than ggF, but easier to reject backgrounds Very challenging jet backgrounds Several orders of magnitude bigger Biggest contributions from top, W+jets and Z+jets Event selection (Focusing on VH analysis) Three categories based on number of leptons • 0 leptons: $ZH \rightarrow vvbb$ • 1 lepton: WH \rightarrow lvbb • 2 leptons: $ZH \rightarrow llbb$ No additional leptons •Some missing energy in case of v in final state •Two b-tags: 70% efficiency per tag (mistag ~1%) Categories further split Depending on vector boson momentum and number of jets Data presented here •2011 \sqrt{s} =7TeV $\int Ldt = 4.7 fb^{-1}$ •2012 √s=8TeV ∫Ldt = 13fb⁻¹

ZH → eebb

Currently ~50 signal candidates for VH(bb)

$H \rightarrow bb$

-Consistency of observed data with background-only hypothesis -local $p_0(m_H=125GeV) = 0.64$ (corresponding to 1σ)

Exclusion limits

•SM Higgs excluded at 95%CL for m_H =110 GeV

$H \rightarrow \tau \tau$

Three decay modes exclusively defined by number of leptons

•H $\rightarrow \tau_{\rho}\tau_{\rho}$ (~12%)

•H $\rightarrow \tau_{\ell} \tau_{h}$ (~46%)

•H $\rightarrow \tau_h \tau_h$ (~42%)

Many exclusively defined categories

Based on jet multiplicity, kinematics and H production mode

 Signature τ-pair from resonance ■Missing E_T Poor mass resolution Background understanding crutial •The most important irreducible Background is $Z \rightarrow \tau \tau$ •Modelled using real $Z \rightarrow \mu\mu$ events and replacing μ by simulated τ Data presented here •2011 √s=7TeV $\int Ldt = 4.6 fb^{-1}$

VBF H $\rightarrow \tau_e \tau_\mu$

Currently ~330 signal candidates for $H \rightarrow \tau \tau$

$H \rightarrow \tau \tau$

Consistency of observed data with background-only hypothesis

 local p₀(m_H=125GeV) = 13.5% (corresponding to 1.1σ)

 Exclusion limits

 No range of SM Higgs masses excluded at 05% CI

No range of SM Higgs masses excluded at 95%CL

$H \rightarrow \gamma \gamma$

 Very small branching ratio (~0.2%) But clean signature •Full reconstruction of H decay •Good mass resolution \sim 1.5% at best Signature Events / 2 GeV 7000 6000 Two energetic isolated photons 5000 Peak in diphoton mass spectrum 4000 Large background, but smoothly varying 3000 2000 Determined from sidebands 1000 Composition measured in data Events-Fit 300 Good mass resolution requires 200 100 Good photon energy calibration -100 Good photon direction -200 🛏 100 110 -Good understanding of γ-conversion Increased sensitivity by dividing events into categories Based on signal-to-background ratio and mass resolution Data presented here •2011 $\sqrt{s} = 7 \text{TeV}$ $\int Ldt = 4.8 fb^{-1}$ •2012 √s=8TeV $\int Ldt = 13 fb^{-1}$

Currently ~330 signal candidates for $H \rightarrow \gamma \gamma$

$\mathsf{H} \to \gamma \gamma$

•Consistency of observed data with background-only hypothesis •Excess observed around m_H =126.5 GeV •local $p_0 = 4.4 \times 10^{-10}$ (corresponding to 6.1σ) single channel discovery! •global $p_0 = 2.8 \times 10^{-8}$ (corresponding to 5.4σ) •Exclusion limits

•SM Higgs excluded at 95%CL in ranges 110-122.5 GeV and 129.5-144.5 GeV

$H \rightarrow WW^* \rightarrow \ell_V \ell_V$

-Large branching ratio which peaks around $2M_W < m_H < 2M_7$ Provides information about production rate and H coupling to W Dominated by gg-Fusion production mode To enhance different production modes use jet multiplicity Contains 2 neutrinos Poor mass resolution Look for excess above background Signal -2 isolated high p_T leptons with opposite charge + missing ET Use different flavour leptons to reduce background Correlated W spins ឆ្ន<u></u>ា4000 AS Preliminarv $12000 \downarrow \sqrt{s} = 8 \text{ TeV}, \int Ldt = 13.0 \text{ fb}^{-1}$ Leptons go preferentially in same direction Single Top W+jets $H \rightarrow WW^{(*)} \rightarrow evuv/uvev$ Background depends on jet multiplicity H [125 GeV 10000 Reducible: tt, diboson, W+jets, Drell-Yan 8000 Irreducible: WW 6000 4000 Data presented here 2000 $\int Ldt = 13fb^{-1}$ •2012 $\sqrt{s} = 8 \text{TeV}$ 10 2 4 6

Niets

$H \rightarrow WW^* \rightarrow ev\mu v$

Currently ~110 signal candidates for ggH(WW)

$H \rightarrow WW^* \rightarrow \ell_V \ell_V$

-Consistency of observed data with background-only hypothesis -local $p_0(m_H=125GeV) = 4 \times 10^{-3}$ (corresponding to 2.6 σ) -Exclusion limits

SM Higgs excluded at 95%CL in ranges 139-200 GeV

 $H \rightarrow ZZ^* \rightarrow \ell\ell\ell\ell$

•"Golden Channel" •Small branching ratio, but hi	gh S/B	 Data Background ZZ^(*) Background Z+jets, tī
•Full reconstruction good m • $\sigma/m \approx 1-2\%$ at low mass	es	²⁵ Signal (m _H =125 GeV) ²⁵ WW Syst.Unc.
 Clean signature 		20 $Vs = 7 \text{ TeV}: \int Ldt = 4.6 \text{ fb}^{-1}$
•Two ℓ ⁺ ℓ ⁻ pairs forming Z (one	maybe off-shell)	$_{15} = 8 \text{ TeV}$: $\int \text{Ldt} = 13.0 \text{ fb}^{-1}$
 Energetic, isolated leptons 	-	
 Leptons from primary vertex 		
 Background 		
Reducible: Z+jets, Zbb, tt		100 150
Irreducible: ZZ		
Requirements		
•Good single lepton reconstru	ction and trigger e	fficiency: ε ₄ μ~εμ ⁴
•Well understood Lepton ener	av resolution	
 Data presented here 	gy	
•2011 √s=7TeV ∫Lc	$t = 4.8 fb^{-1}$	
•2012 √s=8TeV ∫l c	$1t = 13 f b^{-1}$	

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

m_{4I} [GeV]

ATLAS Preliminary

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

200

$H \rightarrow 4\mu$

Currently ~10 signal candidates for $H \rightarrow 4\ell$

$H \rightarrow ZZ^* \rightarrow \ell\ell\ell\ell$

•Consistency of observed data with background-only hypothesis •Excess observed around m_H =123.5 GeV

-local $p_0 = 2.1 \times 10^{-5}$ (corresponding to 4.1σ)

Exclusion limits

•SM Higgs excluded at 95%CL in ranges 128-168 GeV and 174-580 GeV

Combination

•Consistency of observed data with background-only hypothesis •Excess observed at $m_H=125.2 \pm 0.3(\text{stat}) \pm 0.6(\text{sys})$ GeV •local $p_0 = 10^{-12}$ (corresponding to 7.0σ) •Signal strength • $\hat{\mu}(m_H=125) = 1.35\pm 0.19$ (stat) $\pm 0.15(\text{sys})$

Analysis of Spin and Parity

Spin 2+ hypothesis

Excluded at 91% CL in H→γγ
Excluded at 85% CL in H→4ℓ

Spin 0- hypothesis

Excluded at 99% CL in H→4ℓ

Spin 0 hypothesis

Observation fully compatible

Conclusions & Outlook

 The ATLAS detector has now collected following pp-data •2011: at √s=7TeV $\int Ldt = 4.8 fb^{-1}$ ∫Ldt = 21.7fb⁻¹ •2012: at \sqrt{s} =8TeV Results presented here •Used all 2011 data and 13fb⁻¹ of the 2012 data Updated results confirm earlier observations based on lower statistics •Excess observed at m_H=125.2 ±0.3(stat) ±0.6(sys) GeV -local $p_0 = 10^{-12}$ (corresponding to 7.0 σ) •Further updates using the full 2011+2012 datasets expected soon Observation of "Higgs-like" particle done Measurements of the couplings become more interesting Beginning of 2013 the LHC will continue with heavy ion collisions Afterwards a long shutdown of about two years Accelerator and experiments will prepare for 14 TeV

Additional Slides

Introduction

Higgs is missing keystone in the Standard Model -Higgs mechanism predicts boson, but not it's mass 95% CL Limit/SM Results of direct searches before LHC: •LEP: excluded (@95%CL) m_H<114GeV •Tevatron: excluded(@95%CL) 160<m_H<170GeV</p> Higgs discovery is one of the main goals for the LHC SM •Not the only one, but that's a different story... Observation of a new particle with a mass of about 125 GeV ATLAS and CMS announced a discovery 95% CL Limit on μ **ATLAS** 2011 - 2012 "Higgs-like particle"… is it the Higgs? $v_{s} = 7 \text{ TeV}$: $\int dt = 4.6-4.8 \text{ fb}^{2}$ vs = 8 TeV; Ldt = 5.8-5.9 fb Change in the analyses Away from purely discovery search Towards measurements of properties 10 110 150•pp-collision mode stopped at LHC for upgrade •All analyses will be updated using the full statistics avilable

+ 2σ

300

Observed

····· Bkg. Expected

CL_a Limits

500

m_H [GeV]

The Large Hadron Collider

Julius-Maximilians

WÜRZBURG

•(design) CM energy:	14 TeV
•(2012)	8 TeV

- •(design) Luminosity: 10^{34} cm⁻²s⁻¹•(2012) 7.7×10^{33} cm⁻²s⁻¹
- •(design)Bunch crossing:25 ns•(2012)50 ns
- •Protons per bunch: $\sim 10^{11}$ •Beam radius:16.7 μ m

27

The ATLAS Data

Results presented here correspond to

•2011 data taking

- Centre-of-mass energy $\sqrt{s} = 7$ TeV
- Integrated luminosity ~4.8fb⁻¹
- Pileup
- 2012 data taking
 - Centre-of-mass energy
 - Integrated luminosity
 - Pileup

More to come

2012 data taking

Integrated luminosity up tp 21.7fb⁻¹
 In preparation for Moriond conference

High Pile-up

•Event • $Z \rightarrow \mu\mu$ •Verteces •25 reconstructed •Tracks •Only displayed if $p_T > 0.4 GeV$

$H \rightarrow bb$

•Examples of the m_{bb} distributions for the 0, 1 and 2-lepton category

Overall good description of data by MC

Background composition depends on category

Description uses combination of MC and data-driven estimate

- Multijet purely data-driven estimation
- Diboson purely MC based
- All others take shape from MC and normalisation from data

Boosted H $\rightarrow \tau \tau$

•Example showing boosted Higgs analysis in the three $\tau\tau$ decay channels •General agreement between data and MC good •Note: the signal contribution in MC has been scaled for visibility •MMC mass = missing mass calculator to reconstruct $m_{\tau\tau}$ •Efficiency > 99% •Mass resolution 13-20%

Mass Measurements

Signal strength (μ)

 $\mu(m_H=125) = 1.35\pm0.19 \text{ (stat)}\pm0.15(\text{sys})$ Combined mass measurement m_H=125.2 ±0.3(stat) ±0.6(sys) GeV

Individual measurements

Results in agreement with 2.7σ assuming Gaussian pdfs for systematic uncertainties More conservative treatment of uncertainties yields 2.3σ

Mass scale systematic (MSS) uncertainties e Energy scale from Z→ee Material upstream from EM calo Energy scale of presampler

Spin Analysis in H→γγ

Using inclusive analysis

Spin hypotheses

•Sensitive variable is diphoton $\cos \theta^*$ distribution

•Use events within 1.5σ of the peak (m_H=126.5 GeV)

•Expected sensitivity: exclusion of spin 2⁺ hypothesis at the 97% CL •Observed exclusion of spin 2⁺ hypothesis at the 91% CL •Observation fully compatible with spin 0 (within 0.5σ)

UNIVERSITAT

WÜRZBURG

Spin Analysis in H→4ℓ

Two methods using distribution of 5 production and decay angles
 Boosted decision tree (BDT) in a multivariate analysis
 Matrix element based likelihood ratio (MELA)

Spin hypotheses

 Expected sensitivity: exclusion of spin 2+ hypothesis at the 80% CL
 Observed exclusion of spin 2+ hypothesis at the 85% CL
 Observation fully compatible with spin 0 (within 0.18σ)

 θ_1

Parity Analysis in H→4ℓ

Two methods using distribution of 5 production and decay angles
 Boosted decision tree (BDT) in a multivariate analysis
 Matrix element based likelihood ratio (MELA)

Parity hypotheses
 Expected sensitivity: exclusion of the 0⁻ hypothesis at the 96% CL
 Observed exclusion of the 0⁻ hypothesis at the 99% CL
 Observation fully compatible with spin 0 (within 0.5σ)

 θ_1

Outline

-Introduction -SM Higgs at the LHC -The ATLAS Detector -Higgs Decay Channels discussed here $H \rightarrow bb$ $H \rightarrow \tau \tau$ $H \rightarrow \gamma \gamma$ $H \rightarrow WW$ $H \rightarrow ZZ$ -Conclusion and outlook

Higgs Production at the LHC

Higgs Searches in ATLAS

Summary of latest results in all channels

 Many analyses

 Too much to present today

 All results online

 Some examples presented now

Channel	Conference note	L (fb ⁻¹)	Date	Publication	L (fb ⁻¹)	Date
SM H combination	ATLAS-CONF-2012-170	4.9+13.0	Dec 2012	arXiv:1207.7214	4.9+5.9	Jul 2012
SM H to ZZ(*) to 4I	ATLAS-CONF-2012-169	4.8+13.0	Dec 2012	arXiv:1202.1415	4.8	Feb 2012
SM H to diphoton	ATLAS-CONF-2012-168	4.9+13.0	Dec 2012	arXiv:1202.1414	4.9	Feb 2012
LFV Charged Higgs	-	4.7	Dec 2012	Paper	4.6	Feb 2012
SM H couplings	ATLAS-CONF-2012-127	4.9+5.9	Sep 2012			
SM H combination	ATLAS-CONF-2012-162	4.9+13.0	Nov 2012	arXiv:1207.7214	4.9+5.9	Jul 2012
SM H to diphoton	ATLAS-CONF-2012-091	4.9+5.9	Jul 2012	arXiv:1202.1414	4.9	Feb 2012
SM H to ZZ(*) to 4I	ATLAS-CONF-2012-092	4.8+5.8	Jul 2012	arXiv:1202.1415	4.8	Feb 2012
SM H to WW to Iv/v SM H to WW to Iv/v (MVA)	ATLAS-CONF-2012-158 ATLAS-CONF-2012-060	4.7+13.0 4.7	Nov 2012 Jun 2012	arXiv:1206.0756	4.7	Jun 2012
SM WH, H to WW	ATLAS-CONF-2012-078	4.7	Jul 2012	-	-	-
SM H to tautau	ATLAS-CONF-2012-160	4.7+13.0	Nov 2012	arXiv:1206.5971	4.7	Jun 2012
SM VH, H to bb	ATLAS-CONF-2012-161	4.7+13.0	Nov 2012	arXiv:1207.0210	4.7	Jun 2012
SM ttH, H to bb	ATLAS-CONF-2012-135	4.7	Sep 2012	-	-	
SM H to ZZ to Ilvv	ATLAS-CONF-2012-016	4.7	Mar 2012	arXiv:1205.6744	4.7	May 2012
SM H to ZZ to Ilqq	ATLAS-CONF-2012-017	4.7	Mar 2012	arXiv:1206.2443	4.7	Jun 2012
SM H to ZZ to Ilqq Low Mas	ATLAS-CONF-2012-163	4.7	Nov 2012	-		
SM H to WW to lvqq	ATLAS-CONF-2012-018	4.7	Mar 2012	arXiv:1206.6074	4.7	Jun 2012
Higgs in SM with 4th fermion generation	ATLAS-CONF-2011-135	1.0-2.3	Aug 2011	-	-	•
Fermiophobic H to diphoton	ATLAS-CONF-2012-013	4.9	Mar 2012	arXiv:1205.0701	4.9	May 2012
MSSM neutral H	ATLAS-CONF-2012-094	4.7	Jul 2012	arXiv:1107.5003	0.036	Jul 2011
MSSM H+ to taunu	ATLAS-CONF-2012-011	4.7	Mar 2012	arXiv:1204.2760	4.6	Apr 2012
MSSM H+ to csbar	ATLAS-CONF-2011-094	0.035	Jul 2011		-	
NMSSM a1 to mumu	ATLAS-CONF-2011-020	0.037	Mar 2011	-	-	-
NMSSM H to alla0 to Inhotons	ATLAS CONE 2012 079	4.9	101 2012			

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

UNIVERSITÄT WÜRZBURG

H → bb
-Highest branching ratio at low masses m _H
 Associated production ttH and VH
 Lower cross section than ggF, but easier to reject backgrounds
 Very challenging iet backgrounds
-Several orders of magnitude bigger
 Biggest contributions from top, W+jets and Z+jets
 Event selection (Focusing on VH analysis)
Three categories based on number of leptons
• 0 leptons: $ZH \rightarrow vvbb$
• 1 lepton: $WH \rightarrow lvbb$
■ 2 leptons: 2H → llbb
Some missing energy in case of v in final state
•Two b-tags: 70% efficiency per tag (mistag ~1%)
•Categories further split
 Depending on vector boson momentum and number of jets
 Data presented here
•2011 $\sqrt{s}=7TeV$ $\int Ldt = 4.7fb^{-1}$
■ 2012 \sqrt{s} =8TeV $\int Ldt = 13fb^{-1}$
UNIVERSITÄT WÜRZBURG

ZH → eebb

VBF H $\rightarrow \tau_e \tau_\mu$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

11

$H \rightarrow WW^* \rightarrow ev\mu v$

Conclusions & Outlook

•The ATLAS detector has now collected following pp-data •2011: at \sqrt{s} =7TeV $\int Ldt = 4.8 fb^{-1}$ •2012: at \sqrt{s} =8TeV $(I dt = 21.7 fb^{-1})$
•Results presented here
Used all 2011 data and 13fb ⁻¹ of the 2012 data
•Updated results confirm earlier observations based on lower statistics •Excess observed at m_H =125.2 ±0.3(stat) ±0.6(sys) GeV
-local $p_0 = 10^{-12}$ (corresponding to 7.0 σ)
 Further updates using the full 2011+2012 datasets expected soon Observation of "Higgs-like" particle done
 Measurements of the couplings become more interesting
 Beginning of 2013 the LHC will continue with heavy ion collisions
•Afterwards a long shutdown of about two years
 Accelerator and experiments will prepare for 14 leV

Julius-Meximilians-UNIVERSITÄT WÜRZBURG

24

Additional Slides

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

25

Introduction

The Large Hadron Collider

Stall and a stall	•(design) CM energy:	14 TeV
	•(2012)	8 TeV
	•(design) Luminosity: 1	0 ³⁴ cm ⁻² s ⁻¹
	•(2012) 7.7 × 10) ³³ cm ⁻² s ⁻¹
	design)Bunch crossing:	25 ns
	•(2012)	50 ns
ALL LAND AND ALL AND A	Protons per bunch:	~1011
	Beam radius:	16.7 μm
Julius-Auto-influens- UNIVERSITÄT WÜRZBURG	83 9 2 8	27

<section-header><section-header><section-header><complex-block><image><text><list-item><list-item><list-item><list-item>

