Some lessons from Higgs boson and other LHC results for New Physics

Leszek Roszkowski*

National Centre for Nuclear Research Warsaw, Poland

*On leave of absence from University of Sheffield

Grants for innovation. Project operated within the Foundation for Polish Science "WELCOME" co-financed by the European Regional Development Fund

L. Roszkowski, Epiphany 2013

Many open questions in particle physics

- Origin of particle masses?
- Origin of EWSB?
- Origin and structure of flavor and CP X?
- New physics beyond the Standard Model?
- Dark matter in the Universe?
- Unification of fundamental forces?
- Role of gravity?
- History of the early Universe?

• ...

LHC: chance to shed light on some of them

Many BSM ideas waiting to be tested...

- Supersymmetry of several sorts
- Large/warped extra dimensions
- Low-scale gravity, microscopic black holes
- Little Higgs framework
- Extra gauge bosons
- Extra fermions
- Extra interactions

Main news from the LHC so far...

...a BSM theorist's perspective!

Higgs(-like) particle at ~126 GeV

• No (convincing) deviations from the SM

 $\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$

The Higgs boson!

- First fundamental (?) spin-0 (?) state
- Validation of last 50 years of theory work
- Plan A confirmed (EWSB via Higgs mechanism)

Is the Higgs boson SM-like?

Possibly, not enough data and precision yet

• Enhancements/deficits real?

Too early too tell. Current situation somewhat confusing. Many speculations, unlikely to pass the test of time.

Ways to go

- SM confirmed end of the story (and collider physics?)
- Higgs is fundamental > SUSY
- Higgs is composite -> effective theory
- •••

My approach in this talk:

Main interest: prospects to discover signatures at the LHC(14TeV)

Much less: theoretical and/or esthetic arguments (fine-tuning, naturalness, etc).

m_h~126 GeV

- **SM:** Higgs mass not predicted m_h^2 = lambda * v^2
- -> lambda ~0.25 perturbative theory!
- SUSY:
 - m_h ~< 135 GeV
- Composite Higgs:
 m_h ~> 110 GeV

A. Pomarol

Higgs as a Pseudo-Goldstone Boson?

SM couplings break global symmetry => PGB

New vector-like fermions With EM charges of 5/3, 2/3, -1/3

Possible signature: same-sign dileptons

LH: Strong sector => hard to make predictions

Current limits: ~500-700 GeV

7 January 2013

Supersymmetry

particle physics

- grand unification,
- supergravity, superstrings,
- hierarchy/naturalness/fine-tuning,
- fermion masses and mixings,
- neutrino masses and mixings,
- CP/flavor violation,
- ٩

. . .

astroparticle physics

- WIMP dark matter,
- E–WIMPs: gravitinos and axinos
- other relics

particle cosmology

cosmic inflation,

. . .

- baryogenesis/leptogenesis,
- relic production and decay after BB,
- effect on and constrains from BBN,
- effect on and constrains from CMB,

SUSY has dominated theoretical efforts beyond the SM for the last two-three decades...

Claims about SUSY

<u>WRONG</u>

 SUSY can explain everything

(Eg. 135 GeV gamma line from GC)

- SUSY has been discovered!
- SUSY has been ruled out!

<u>RIGHT</u>

• SUSY cannot be ruled out. It can only be discovered...

(... or abandoned)

 Motivation for SUSY has become stronger

Light Higgs!

SUSY is not only shy but probably also heavy (~1 TeV)

~126 GeV Higgs and SUSY

> 1 loop correction

anuary 2013

$$\Delta m_h^2 = \frac{3m_t^4}{4\pi^2 v^2} \left[\ln\left(\frac{M_{\rm SUSY}^2}{m_t^2}\right) + \frac{X_t^2}{M_{\rm SUSY}^2} \left(1 - \frac{X_t^2}{12M_{\rm SUSY}^2}\right) \right]$$

 $M_{\rm SUSY} \equiv \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$

Sufficient to take large enough M_SUSY and/or adjust X_t

 $X_t = A_t - \mu \cot \beta$

Can one have ~126 GeV Higgs in unified SUSY?

... with M_SUSY \lsim 1 TeV?

... and with other constraints satisfied?

L. Roszkowski, Epiphany 2013

Hide and seek with SUSY

SUSY can (potentially) contribute to various measurable quantities

signals of supersymmetric and Higgs particles

direct collider searches: still only lower bounds on masses

- indirect (e.g. loop) contributions
 - electroweak observables: $\sin \theta_W, m_Z, \Gamma_Z,$
 - flavor processes: $b \to s\gamma$, ${
 m BR}(\bar{B}_s \to \mu^+\mu^-)$, ${
 m BR}(\bar{B}_u \to \tau\nu)$,
 - anomalous magnetic moment of the muon $(g-2)_{\mu}$
 - ...

....

 ${}_{igstacless}$ neutralino WIMP as dark matter to give correct relic abundance $\Omega_{\chi} h^2$

SUSY: most important constraints:

> Dark matter density

Positive measurement, inconsistent with SM

Lower limit...

The Higgs mass

ATLAS: $m_{H} = 126.0 \pm 0.4(stat) \pm 0.4(sys)$ CMS: $m_{H} = \frac{125.8 \pm 0.4(stat) \pm 0.4(syst) \text{ GeV}}{125.8 \pm 0.4(stat) \pm 0.4(syst) \text{ GeV}}$

B_s -> mu mu

LHCb: $\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$

Other flavor (b to s gamma, etc)
M_W, EW,...

The Likelihood function

Central object: Likelihood function

Positive measurements:

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

 $\chi^2 = \frac{[\xi(m) - c]^2}{\sigma^2}$

assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | oldsymbol{\xi}(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

 \checkmark when include theoretical error estimate τ (assumed Gaussian):

$$\sigma
ightarrow s = \sqrt{\sigma^2 + au^2}$$

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_{i} rac{\chi_{i}^{2}}{2}
ight]$$

Limits:

 $(e.g., M_W)$

- Smear out bounds.
- Add theory error.

LHC direct limits:

Need careful ٠ treatment.

Hide and seek with SUSY

	Measurement	Mean or Range	Exp. Error	Th. Error	Distribution
3→	CMS razor $4.4/fb$ analysis	See text	See text	0	Poisson
	SM-like Higgs mass m_h	125.3	0.6	2	Gaussian
	$\Omega_\chi h^2$	0.1120	0.0056	10%	Gaussian
	$\sin^2 heta_{ m eff}$	0.23116	0.00013	0.00015	Gaussian
	m_W	80.399	0.023	0.015	Gaussian
	$\delta \left(g-2 ight)^{ m SUSY}_{\mu} imes 10^{10}$	28.7	8.0	1.0	Gaussian
	$\mathrm{BR}\left(\overline{\mathrm{B}} \to \mathrm{X_s}\gamma\right) \times 10^4$	3.60	0.23	0.21	Gaussian
	$BR(B_u \rightarrow \tau \nu) \times 10^4$	1.66	0.66	0.38	Gaussian
	ΔM_{B_s}	$17.77 {\rm ps}^{-1}$	$0.12{\rm ps}^{-1}$	$2.40 \mathrm{ps}^{-1}$	Gaussian
	$BR(B_s \to \mu^+ \mu^-)$	$(3.2^{+1.5}_{-1.2}) \times 10^{-9}$		11%	Gaussian

New!

SM value: $\simeq 3.5 \times 10^{-9}$

10 dof

Constrained Minimal Supersymmetric Standard Model (CMSSM)

Kane, Kolda, Roszkowski and Wells, Phys. Rev. D 49 (1994) 6173

figure from hep-ph/9709356

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$:

- ${}^{ {}_{ { \hspace{-.1em} I} }}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$
- scalars $m_{\widetilde{q}_i}^2 = m_{\widetilde{l}_i}^2 = m_{H_b}^2 = m_{H_t}^2 = m_0^2$

9 3-linear soft terms
$$A_b = A_t = A_0$$

- $\begin{array}{l} \bullet \quad \text{radiative EWSB} \\ \mu^2 = \frac{m_{H_b}^2 m_{H_t}^2 \tan^2 \beta}{\tan^2 \beta 1} \frac{m_Z^2}{2} \end{array}$
- five independent parameters: $m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sgn}(\mu)$
- well developed machinery to compute masses and couplings

Light Higgs mass and SUSY

 $M_{\rm SUSY} \equiv \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$

Diouadi, arXiv:hep-ph/0503173

130 120 M^h (GeV) 100 1-loop 2-loop 90 FeynHiggs 0 X. (TeV)

maximal mixing scenario : $X_t = A_t - \mu \cot \beta \sim \sqrt{6} M_S$

Top (pole) mass:

- Tevatron combo 2012: 173.18 pm 0.56 pm 0.75 GeV
 - LHC 2012

173.3 pm 0.5 pm 1.3 GeV

18

- PDG 2012:
- 173.5 pm 1.0 GeV
- CDF (16 may 2012) 173.9 pm 1.9 GeV

To maximize m_h: -> increase M_SUSY, or -> take large |X_t|~|A_t|

- In SUSY m_h is a calculated quantity. ullet
- **1-loop:** $\Delta m_h^2 = \frac{3m_t^4}{4\pi^2 v^2} \left[\ln\left(\frac{M_{\text{SUSY}}^2}{m_t^2}\right) + \frac{X_t^2}{M_{\text{SUSY}}^2} \left(1 \frac{X_t^2}{12M_{\text{SUSY}}^2}\right) \right]$ •
- **2-loop:** DR-bar (Slavich,...) used in SoftSusy, Spheno, • Suspect, and on-shell (Hollik,...) in FeynHiggs

differ by a few GeV

 $_{h_2} \simeq 125.3^{m_1} 3^{\simeq 125.3}$

$m_{h_{1}} \cong m_{h_{2}} \cong 125.3$ $m_{h_{1}} \cong m_{h_{2}} \cong 125.3$ Higgs mass in the CMSSM

Likelihood fn

$$\mathcal{L}_{\mathrm{mass}} \sim e^{-rac{(m_h - 125.3 \ \mathrm{GeV})^2}{\sigma^2 + \tau^2}}$$

$$\sigma = 0.6 \text{ GeV}, \tau = 2 \text{ GeV}$$

~125 GeV Higgs near lowest chi2 (SC,AF)

Unified SUSY: m_h~125 GeV typically a bit too high (unless M_SUSY >> 1TeV)

7 January 2013

L. Roszkowski, Epiphany 2013

All relevant

constraints

included

Higgs vs stop sector

Beyond the Constrained MSSM

Less constrained unified **SUSY models:**

- Add Higgs singlet ullet(CNMSSM) => very CMSSM-like
- **Relax Higgs mass** • unification (NUHM) => slight increase in max m_h

SUSY at the EW scale (MSSM, NMSSM...): => easy to generate m h~126 GeV

Generally in unified SUSY: no enhancement in gamma-gamma!

To summarize: 126 GeV Higgs and SUSY

Light Higgs m_h~126 GeV:

either

• M_SUSY>> 1 TeV => bad news for the LHC?

or

- `light' stop of ~ 1 TeV, or even less => window for LHC
- (Simplest) unified SUSY: tightly constrained; only few specific regions allowed by all relevant constraints

To be partly explored at LHC(14TeV) and in DM searches

- General MSSM and such: lots of room, much weaker bounds on superpartners (below ~1 TeV)
- Some speculations about heavy Higgs at 126 GeV, two Higgs degenerate in mass, etc: long shot, partly inconsistent with LHC and DM limits.

7 January 2013

CMSSM: Impact of BR(Bs->mu mu)

Consistent with the stau coannihilation region. The A-funnel region slightly disfavored.

Abreu, et al. BayesFITS (in prep.) 23

L. Roszkowski, Epiphany 2013

Direct detection of DM

Higgs Mass and Vacuum Stability

Higgs Mass and Vacuum Stability

Standard Model: 125 GeV Higgs => Vacuum metastable? (lifetime >> age of the Universe)

SUSY can stabilize it

The LHC era has only just begun...

- Simplest unified SUSY models under some pressure for M_SUSY~<1 TeV
- Much more room (below 1 TeV) in SUSY at the EW scale
- Generally m_h~126 GeV implies large scale of new physics (partly) beyond the reach of LHC(14 TeV) but pockets of lighter mass spectra remain in many BSM models

Some cleaing up has also begun:

E.g. spin-2 boson with graviton-like couplings (in warped extra dimension of AdS type) inconsistent with measured couplings to vector-boson pairs (WW, gamma-gamma)

Ellis, et al., 1211.3068

