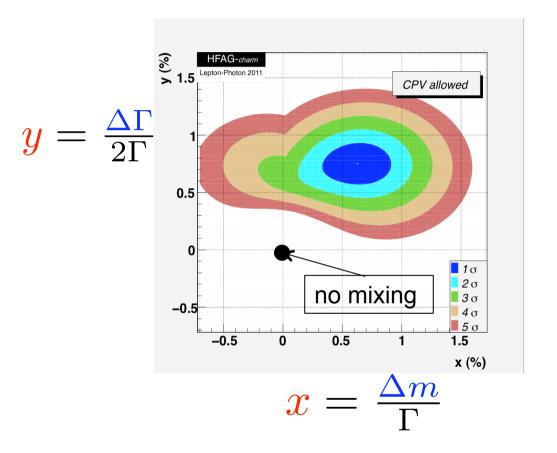

Charm Physics in LHCb, first evidence of CP violation in charm decays

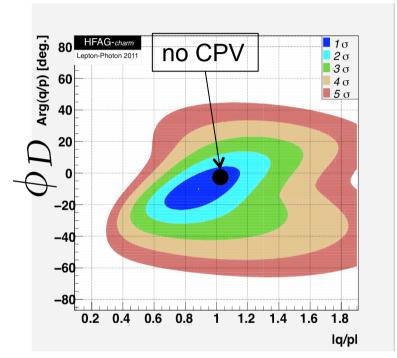
Cracow Epiphany Conference 9 January 2012

Artur Ukleja
(National Centre for Nuclear Research)
on behalf of the LHCb Collaboration

Outline

- Introduction:
 - why we are interested in charm physics
 - types of CP violation
- LHCb and measurements of CP violation in charm sector
 - charm particles in LHCb
 - the trigger and charm physics
 - results for CP violation measurements in LHCb
 - in decays of $D^0 \rightarrow K^+K^- \text{ vs } D^0 \rightarrow \pi^+\pi^-$
 - for Dalitz plots in decays of D⁺→K⁻K⁺π⁺


Summary


Motivation

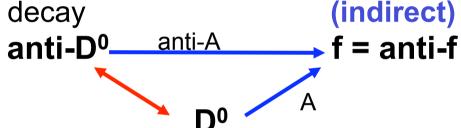
First measurement of mixing D⁰-anti-D⁰, 2007, Belle, BaBar

opens possibilities of rich structure of CP violation in charm sector

CPV if $\Phi_D \equiv (-M_{12}/\Gamma_{12})\neq 0$ lub $|q/p|\neq 1$

So far there was no experimental evidence of CPV in charm sector

→ natural next step: search for CPV in charm sector


Why are we interested in charm sector?

Three types of CP violation:

- 1. in mixing: different rates (indirect)
 - $D^0 \longrightarrow anti-D^0 \neq anti-D^0 \longrightarrow D^0$
- in decay amplitudes: decays of particle and antiparticle are not the same (direct)
 - $D^0 \longrightarrow f \neq anti-D^0 \longrightarrow anty-f$
- 3. in interference between mixing and direct decay

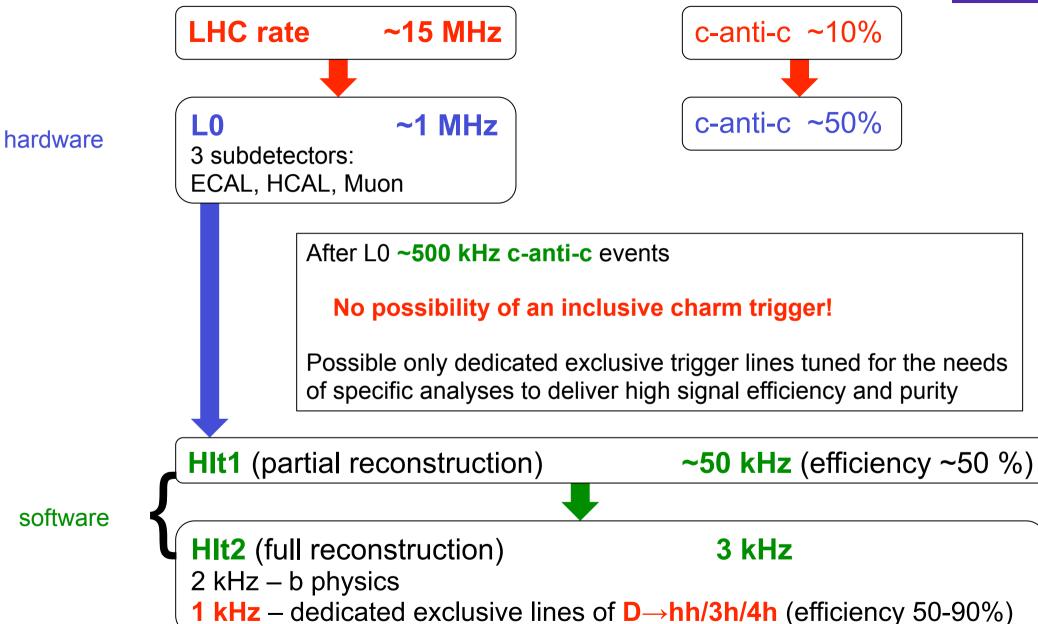
 $D^0 \xrightarrow{A} f = anti-f$ anti- D^0

- In SM expected CPV in charm sector is small (≤ 10⁻³)
 - much smaller than in the beauty sector
 - → perfect place for New Physics searching (small background from SM)
- Input to b physics
 - many b mesons decay to c particles (b→c) ~50% transitions

Charm particles in LHCb

LHCb was built for b physics:

- for precise measurements of CPV in b decays and their very rare decays
- c particles decays are reconstructed as well
 - > measured at LHCb cross-sections at 7 TeV pp:


$$\begin{array}{l} \sigma(b\overline{b}) \sim 0.3 \ mb \\ \sigma(c\overline{c}) \sim 6 \ mb \sim 20 \times \sigma(b\overline{b}) \end{array} \longleftarrow \begin{array}{l} \text{~~10\% of } \sigma_{\text{inel}} \end{array}$$

Phys.Lett.B694(2010) 209-216, LHCB-CONF-2010-013

- large cross-section → a lot of charm particles produced
- possibilities of very precise measurements of charm particles as well
- LHCb is a precision detector
 - \triangleright **VELO** resolution of IP: 38 μm for p_T ≈ 1 GeV
 - > Track reconstruction system lifetime resolution ~ 50 fs: 0.1 $\tau(D^0)$
 - > RICH very good particle identification for π and K: misidentification < 5%
- Charm physics competes with beauty physics
 - → limited possibilities to save data

The trigger and charm physics

example: 5k $D^{*\pm} \rightarrow (D^0 \rightarrow K^{\pm}K^{-+})\pi^{\pm}$ for 1 pb⁻¹ (2010: 38 pb⁻¹, 2011: 1.1 fb⁻¹)

Methods of CPV measurements in charm sector

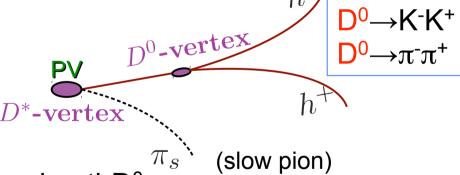
Two types of analysis:

time integrated measurements
 (provide information about CP violation in decays and in mixing)

Two examples of measurements in LHCb

- $D^0 \rightarrow K^+K^- \text{ vs } D^0 \rightarrow \pi^+\pi^-$
- D⁺ \rightarrow K⁻K⁺ π ⁺

Particle-antiparticle asymmetry



We want to measure asymmetry between charm particles and antiparticles

$$\begin{array}{l} A_{CP} \equiv \frac{N_{CP}(\bar{D}^0 \to h^- h^+) - N_{CP}(\bar{D}^0 \to h^- h^+)}{N_{CP}(\bar{D}^0 \to h^- h^+) + N_{CP}(\bar{D}^0 \to h^- h^+)} \\ \text{where } \textit{h=K,} \pi \end{array}$$

- We have to identify D⁰ and anti-D⁰
- We use decays of D*±
 (the sign of slow pion is used to tag the initial D⁰ flavour):

$$D^{*+} \rightarrow D^0 \pi^+_s$$

 $D^{*-} \rightarrow anti-D^0 \pi^-_s$

Measured total asymmetry (RAW) between D⁰ and anti-D⁰:

$$A_{RAW}(f)^* \equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \bar{D}^0(\bar{f})\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \bar{D}^0(\bar{f})\pi^-)}$$

$$f = K - K^+ \cdot \pi \pi^+$$

What asymmetry we measure at LHCb

Raw asymmetry A_{RAW} is a sum of a few physical asymmetries:

$$A_{RAW}(f)^* = A_{CP}(f) + A_D(f) + A_D(\pi_s) + A_P(D^*)$$
 CP detector asymmetry of D° asymmetry of D° asymmetry of π_s in primary vertex (different numbers of D*+ and D*-)
$$A_{CP}, A_D, A_P \equiv \frac{N_{CP}(D^0) - N_{CP}(\bar{D}^0)}{N_{CP}(D^0) + N_{CP}(\bar{D}^0)}$$

$$NCP(D^{\circ})+NCP(D^{\circ})$$
Detector asymmetries for K-K+ and $\pi^{-}\pi^{+}$ cancel since the final states are symmetric

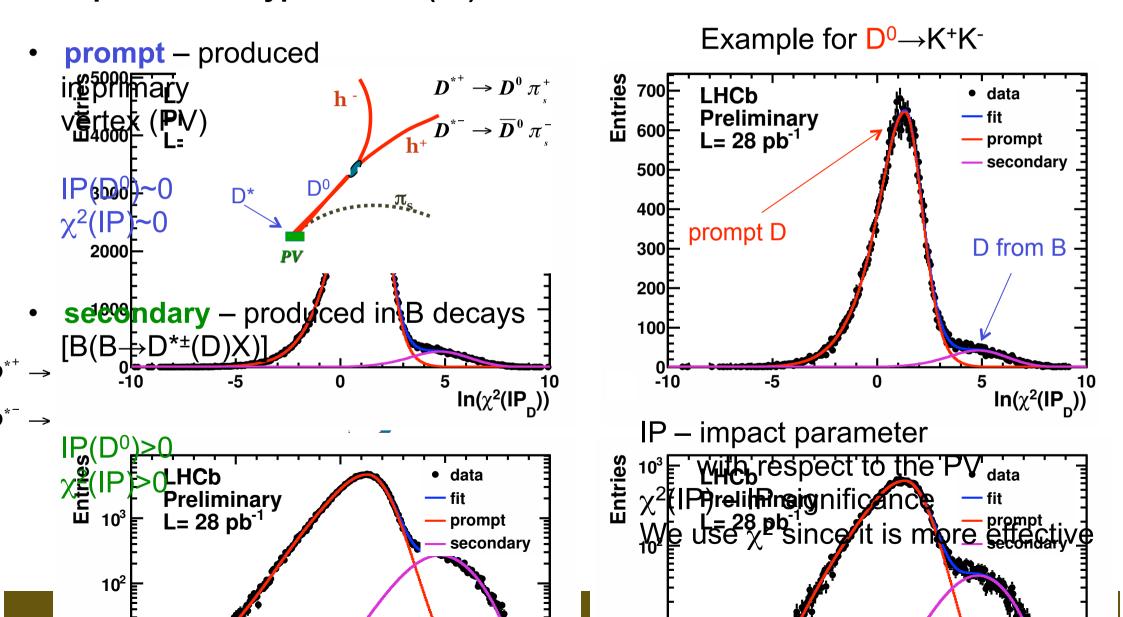
 $A_D(K^-K^+) = A_D(\pi^-\pi^+) = 0$

Detector $A_D(\pi_s)$ and production $A_P(D^*)$ asymmetries will cancel if we subtract raw asymmetries A_{RAW} for K^-K^+ and $\pi^-\pi^+$

for this reason we measure their difference

$$\Delta A_{CP} \equiv A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-})
= A_{RAW}(K^{+}K^{-})^{*} - A_{RAW}(\pi^{+}\pi^{-})^{*}$$

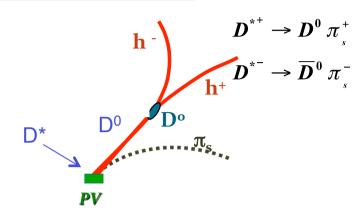
Although the first order asymmetry is canceled in ΔA_{CP} we have to check whether there are any unexpected second order effects.

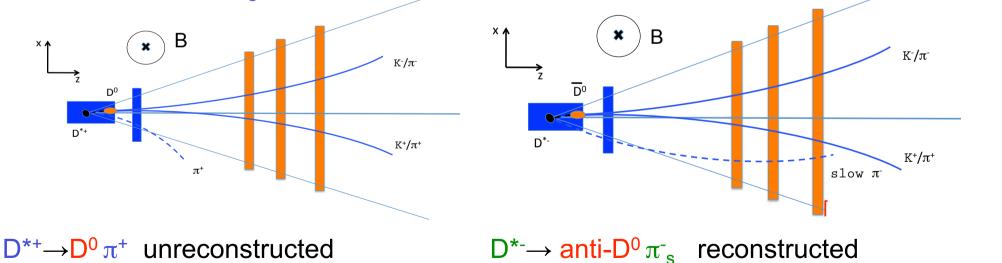

Selection of prompt D*± (D0)

We use D*± produced in primary vertex

To separate prompt D*± and secondary D*± decays we use $\chi^2(IP)$ parameter

Two production types of $D^{*\pm}$ (D^0):


Selection criteria


$$D^{*+} \rightarrow D^0 \pi^+_s$$
 , $D^{*-} \rightarrow anti-D^0 \pi^-_s$

$$D^0 \rightarrow K^-K^+$$
 , $D^0 \rightarrow \pi^-\pi^+$

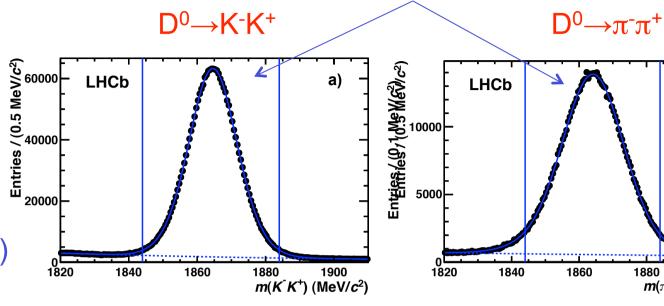
- Impact parameter significance for D⁰: $\chi^2 IP(D^0) < 9$
- Vertex fit quality of D⁰ (D*)
- Track fit quality for all the tracks $K^-K^+\pi^\pm_s$, $\pi^-\pi^+\pi^\pm_s$
- Transverse momentum of D⁰: p_T(D⁰)>2 GeV
- Proper lifetime of D⁰: ct>100 μm
- Identification of K and π

• Fiducial cuts to exclude edges where we have large D^{*+}/D^{*-} acceptance asymmetries: only π_s reconstructed in central part of the detector are considered

 \rightarrow large asymmetry between D^{*+} and D^{*-} in edges of acceptance region

Mass window of D⁰: $1844 < m(D^0) < 1884 \text{ MeV}$

Invariant mass of K-K⁺ and π⁻π⁺

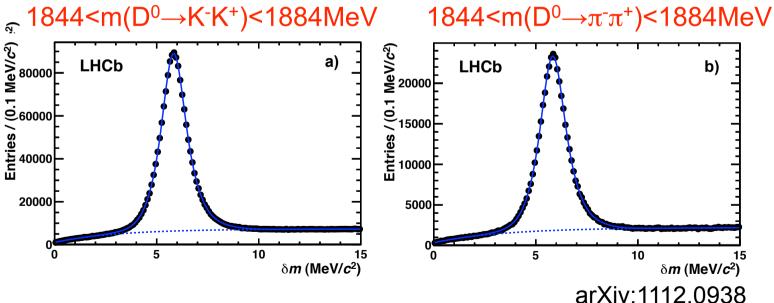

b)

D⁰ decays come from $D^{*+} \rightarrow D^0 \pi^+$ decays

in region:

 $0 < \delta m < 15 \text{ MeV}$

 $\delta m = m(D^0\pi^+) - m(D^0) - m(\pi^+)$


For window mass:

1844<m(D⁰)<1884 MeV

K⁻K⁺: 1.4million events

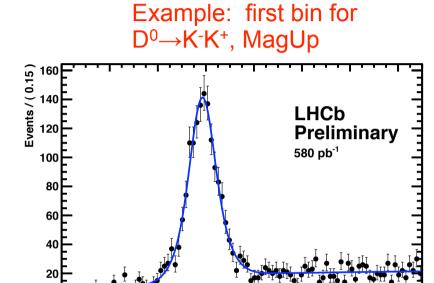
381k events $\pi^{-}\pi^{+}$:

 $L = 0.62 \text{ fb}^{-1} (2011)$

This is NOT a Monte Carlo

1880

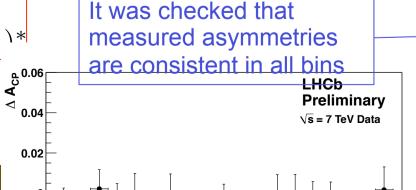
 $m(\pi^{-}\pi^{+})$ (MeV/ c^{2})


From fits to δ m we measured $\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$

Measurement procedure of ΔA_{CP} at LHCb

 δ m (MeV/c²)

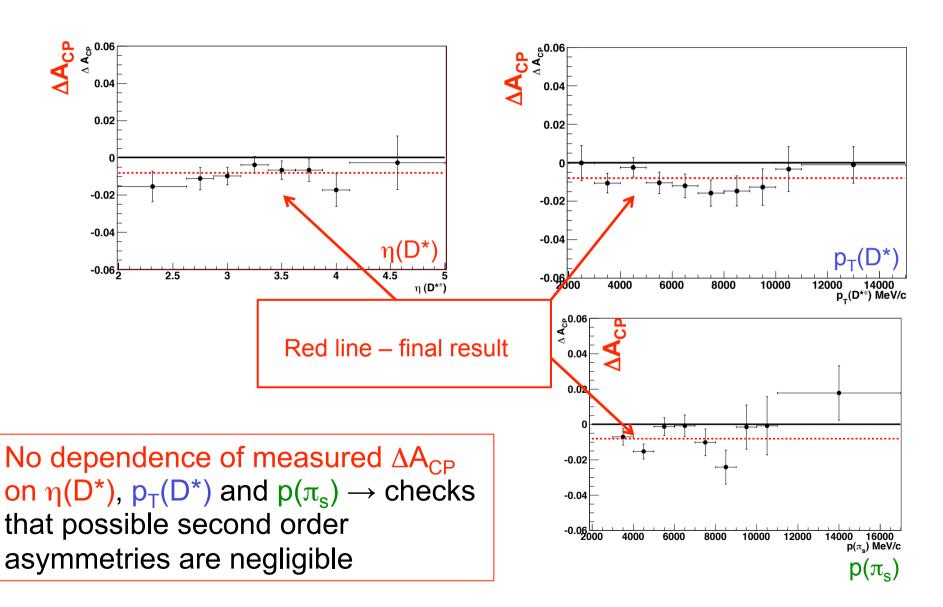
- Raw asymmetries $A_{RAW}(K^-K^+)$ and $A_{RAW}(\pi^-\pi^+)$ are obtained from simultaneous fits for both distributions (D⁰ and anti-D⁰) $\delta m = m(D^0\pi^+) m(D^0) m(\pi^+)$ in **216 bins**:
 - 54 kinematic bins of p_T(D*),η(D*),p(π_s)
 - production and detector asymmetries can depend on p_{T} and η
 - reconstruction efficiencies for K^- and K^+ or π^- and π^+ can be different
 - x 2 = 108 bins two polarizations of magnetic field
 - x 2 = 216 bins
 two periods of data taking: before and after technical stop: 350 pb⁻¹, 270 pb⁻¹
 - 432 independent fits for D⁰→K⁻K⁺ and D⁰→π⁻π⁺



• 216 values of ΔA_{CP} :

$$\Delta A_{CP} \equiv A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-})
= A_{RAW}(K^{+}K^{-})^{*} - A_{RAW}(\pi^{+}\pi^{-})^{*}$$

- Final △A_{CP} → weighted average
- Total statistical uncertainty of △A_{CP}:


0.21%

Kinematic variable dependencies

Measured $\triangle A_{CP}$ in bins of three variables: $\eta(D^*)$, $p_T(D^*)$ i $p(\pi_s)$

Systematic uncertainties

Systematic uncertainties which have the highest contribution:

- Fit procedure: 0.08 %
 - evaluated as a change in ΔA_{CP} between baseline fit and not using any fitting at all (just sideband subtraction in δm for KK and $\pi \pi$ modes)
- Multiple candidates: 0.06 %
 - evaluated as a mean change in ΔA_{CP} when removing multiple candidates, keeping only one candidate per event chosen at random
- Kinematic binning: 0.02%
 - evaluated as a change in ΔA_{CP} between full 216-bin kinematic binning and "global" analysis with just one giant bin

Total systematic uncertainty: 0.11%

Final result (weighted average, LHCb 2011, 0.62 fb⁻¹):

$$\Delta A_{CP} = [-0.82 \pm 0.21^{stat} \pm 0.11^{syst}]\% \longrightarrow \begin{bmatrix} \text{FIRST} \\ \text{EVIDENCE} \end{bmatrix}$$

significance: **3.5** σ

△A_{CP} interpretation

CPV asymmetry of each final state is a sum of:

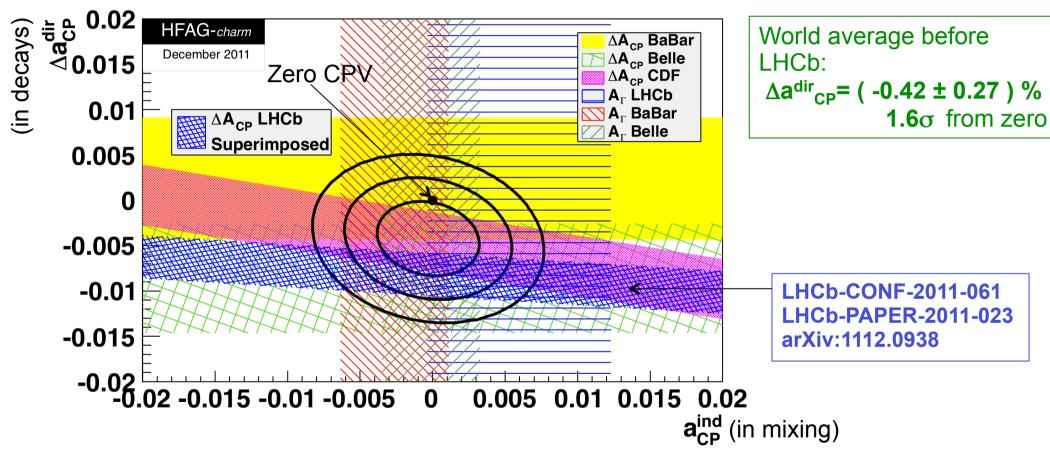
CPV in decays and in mixing $A_{CP}(f) \approx a_{CP}^{dir}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}$ [JHEP 1106 (2011) 089] Lifetime of D 0 (PDG)

Mean proper time in used sample (acceptances are a function of time for K^-K^+ and $\pi^-\pi^+$ are not the same)

$$\Delta A_{CP} \equiv A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-})$$

$$\Delta A_{CP} = \left[a_{CP}^{dir}(K^{-}K^{+}) - a_{CP}^{dir}(\pi^{-}\pi^{+})\right] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind}$$

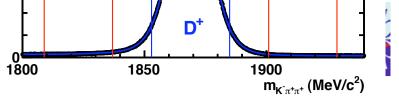
Since CPV in mixing is universal and does not depend on a final state, contributions from mixing would cancel in subtraction, but the mean proper time difference of D⁰ is not zero in used samples for K^-K^+ and $\pi^-\pi^+$:


$$\frac{\Delta \langle t \rangle}{\tau} = \frac{\langle t_{KK} \rangle - \langle t_{\pi\pi} \rangle}{\tau} = (9.8 \pm 0.9)\%$$

Contributions from CPV in mixing suppressed in one order of magnitude

Comparison with the world average

First evidence for CP violation in charm decays

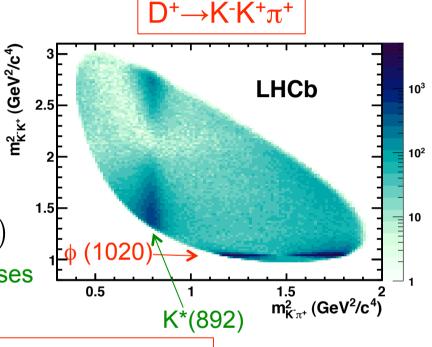

LHCb 2011, 0.62 fb⁻¹:

$$\Delta A_{CP} = [-0.82 \pm 0.21^{stat} \pm 0.11^{syst}]\%$$

significance: 3.5σ

LHCb 2011 total 1.1 fb⁻¹ (remaining ~500 pb⁻¹ is analyzed)

Searches for CP violation in D¹



Finding the evidence of CP violation in $D^0 \rightarrow hh$ decays gives nope to mind this asymmetry in other decays as well, for example in $D^{\pm} \rightarrow hhh$

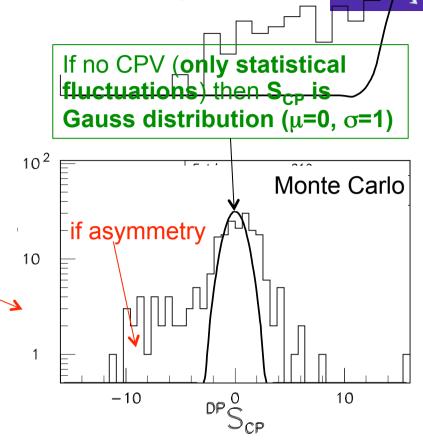
Decays of D→hhh:

- decay products form many resonance states visible in Dalitz plot
- large strong phase differences between resonance states necessary to observe the CP asymmetry

$$Asym_{CP} \sim |A_1| |A_2| sin(\phi_1 - \phi_2) sin(\delta_1 - \delta_2)$$
 weak phases strong phases

We hope to observe the local charge asymmetries

- ♦ The charge asymmetry can be measured locally in regions of Dalitz plots
- ♦ In one region the charge asymmetry can be positive and in another negative.
- ♦ Local asymmetries can be washed out when integrated over the Dalitz plot.
 - To find asymmetries we compare locally Dalitz plots for D⁺ and D⁻.


Searches for CP violation in D[±] decays

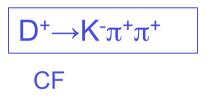
- For each bin in a region of Dalitz plot we measure local charge asymmetry
- Instead of: $\Delta(i) \equiv \frac{N^i(D^+) N^i(D^-)}{N^i(D^+) + N^i(D^-)}$ calculate \mathbf{S}_{CP} (Miranda procedure):

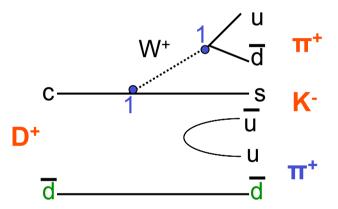
$$S_{CP}^{i} \equiv \frac{N^{i}(D^{+}) - N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + N^{i}(D^{-})}}$$

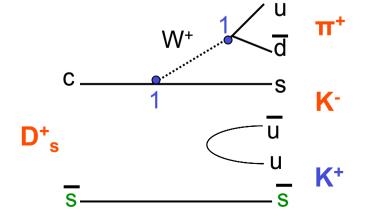
[Bediaga et al. Phys.Rev.D80(2009)096006]

- S_{CP} is a significance of a difference between D⁺ and D⁻
- For the first time it was used to find local signals in astronomy
 [Astr. Jour. 272:317, 1983]
- The method does not depend on a model
- In this presentation the method is used for three body decays: D⁺_(s)→h⁻h⁺h⁺ (h=K,π)

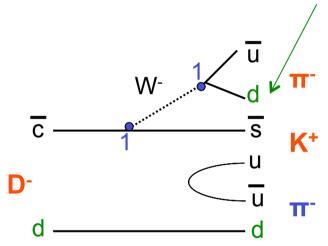
Also χ^2 test can be used: $\chi^2 = \Sigma S^i_{CP}^2$ \rightarrow p-value – probability of obtaining value of the test that is equal or greater than the one obtained, assuming that the null hypothesis (no CPV) is true

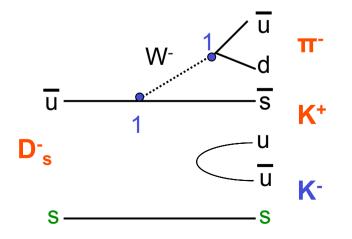

• The two methods are equivalent


Decays of $D^+_{(s)} \rightarrow h^+h^+h^+$ (h=K, π)

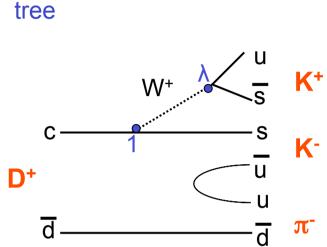

There are three classes of analyzed decays:

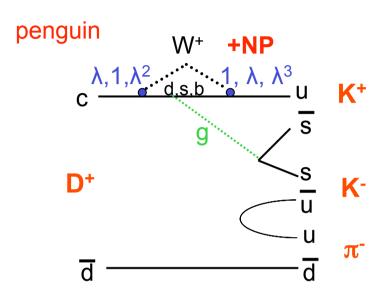
- Cabibbo favored (CF)
- singly Cabibbo suppressed (SCS)
- doubly Cabibbo suppressed (DCS)





can be also s quark: $1 \rightarrow \lambda$ (SCS)





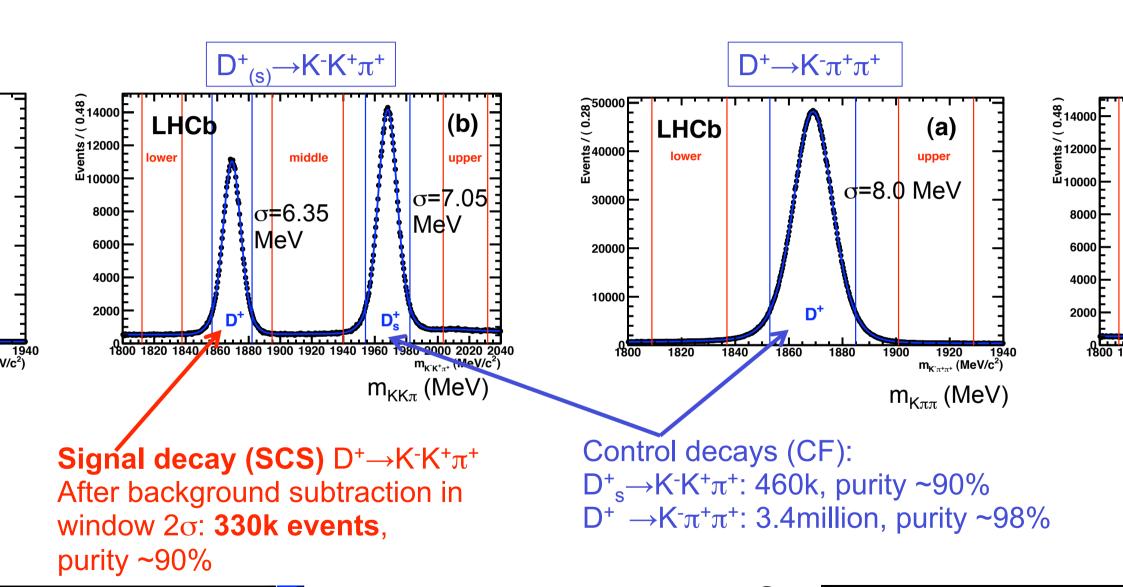
Singly Cabibbo suppressed decays

$$D^+ \rightarrow K^- K^+ \pi^+$$

- SCS decay can be realized also via penguin diagram
- tree and penguin amplitudes can interfere
- SM predictions of CPV in the decays ~0.1 %
- in penguin loops the new particles can be exchanged

Penguin diagrams open possibilities for finding New Physics

```
Signal decay (SCS): D^+ \rightarrow K^-K^+\pi^+
Control decays (CF): D^+_s \rightarrow K^-K^+\pi^+, D^+ \rightarrow K^-\pi^+\pi^+
```


Reconstruction of D⁺_(s)→h⁻h⁺h⁺ decays in LHCb

The analysis is based on 2010 dataset of 38 pb⁻¹

rm Physics in LHCb

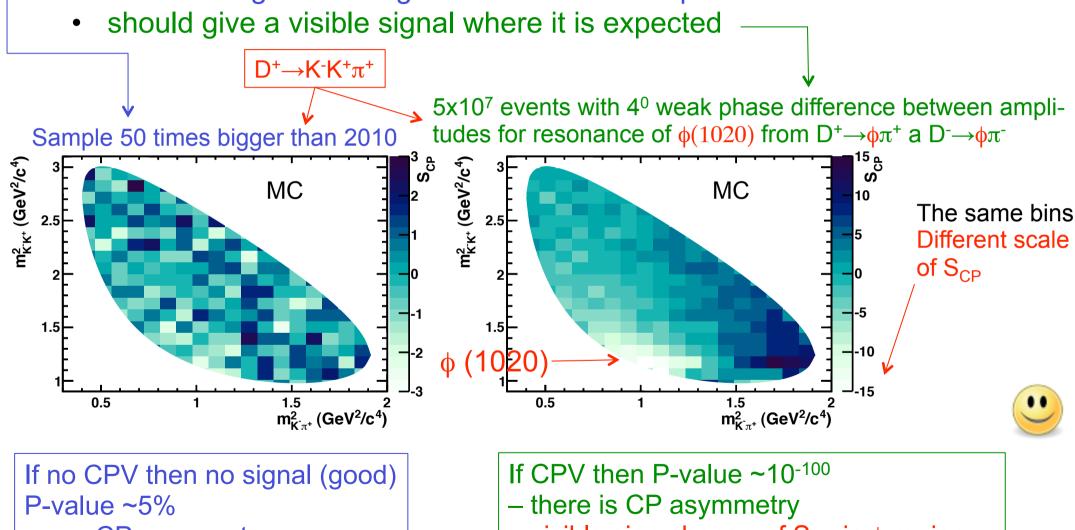
LHCb

Strategy

The method allows us to see the difference between D⁺ and D⁻.

Measured asymmetry can come from:

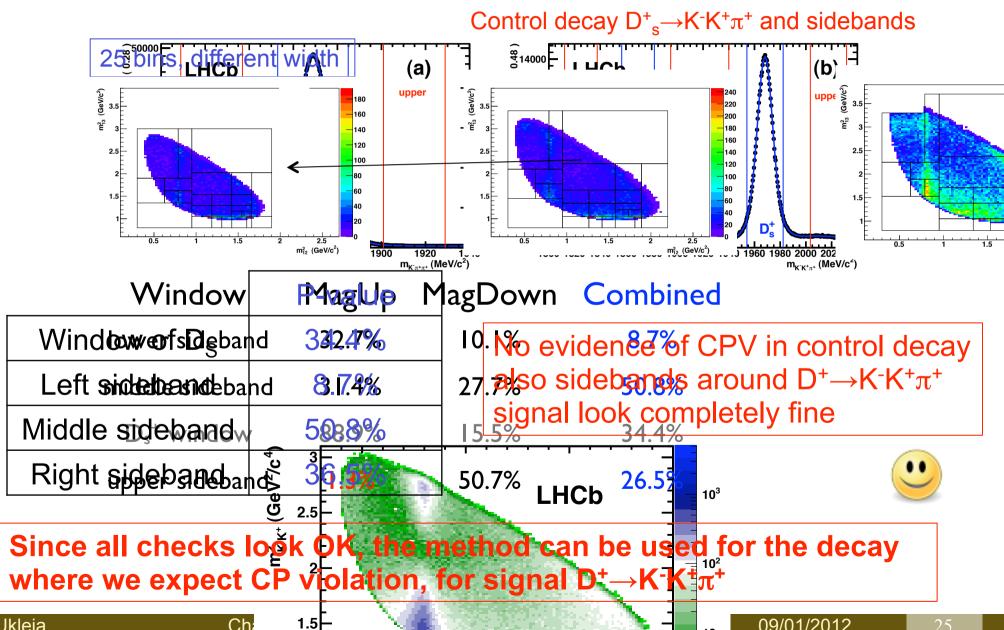
- production asymmetry
- detector asymmetries (for example K⁺ and K⁻ interact in the detector in different ways → different efficiencies in the reconstruction for particle and antiparticle)
- background asymmetry
- CP asymmetry
- The best way is to cancel pollution asymmetries:
 to cancel global asymmetries (example production asymmetry)
 we normalize Dalitz plots for D⁺ and D⁻, as:


$$S_{CP}^{i} \equiv \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) + \alpha^{2}N^{i}(D^{-})}}$$
 $\alpha = \frac{N(D^{+})}{N(D^{-})}$

 Remaining pollution asymmetries can be estimated from comparison of different control decays and sidebands (no CPV expected) with signal decay (CPV expected).

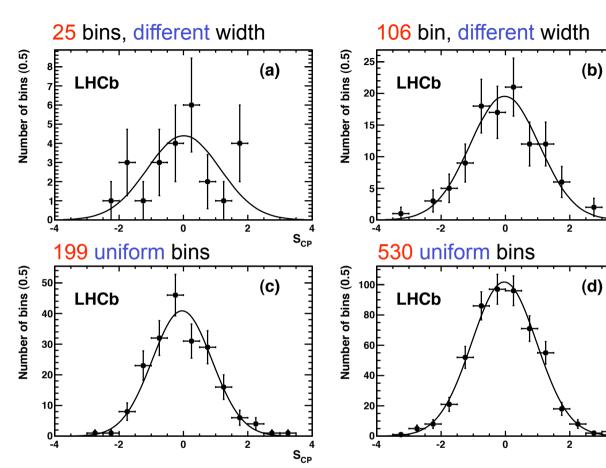
Tests of the method

- Check the response of the method on Monte Carlo (Dalitz models from CLEO-c, arXiv:0807.4545):
 - should not generate signal where it is not expected


→ no CP asymmetry

visible sign change of S_{CP} in φ region

Tests of method



- For control decays and sidebands asymmetry is not observed
 - detector, production and background asymmetries are under control

Results for D⁺→K⁻K⁺π⁺ (signal)

We have tried various widths and various numbers of bins in the Dalitz plot

- S_{CP} distributions
 consistent with standard
 Gauss distribution
 (μ~0, σ~1)
- P-values are all above 10 %

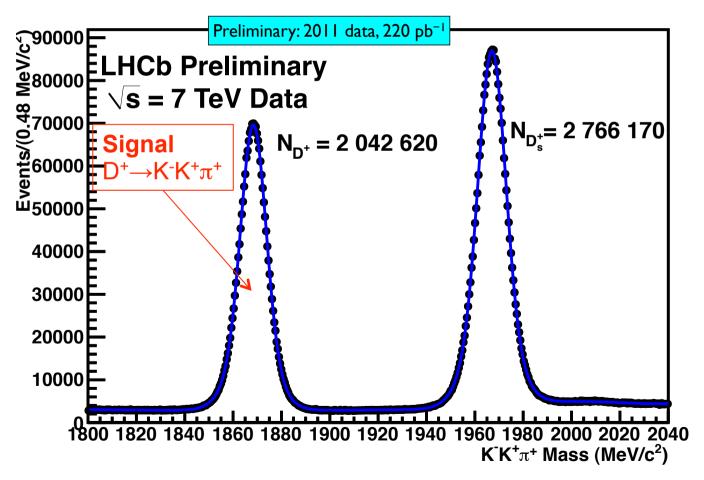
SCP

	μ	σ	χ²/ndf	P-value
(a)	0.01±0.23	1.13±0.16	32.0/24	12.7%
(b)	-0.024±0.010	1.078±0.074	123.4/105	10.6%
(c)	-0.043±0.073	0.929±0.051	191.3/198	82.1%
(d)	-0.039±0.045	1.011±0.34	519.5/529	60.5%

No evidence for CP violation in the 2010 dataset of 38 pb⁻¹

LHCb-PAPER-2011-017 arXiv:1110.3970

2011 dataset: decays of D⁺→K⁻K⁺π⁺ (signal)



2010: 38 pb⁻¹, 370k events

no CPV observed

2011: 1.1 fb⁻¹ (30 times more events)

... but there is much more to come

For 220 pb⁻¹: $N(D) \sim 2 \text{ million}$ $N(D_{s.}) \sim 2.8 \text{ million}$ 5 times more events than in 2010

For 1.1 fb⁻¹ Additional 5 times more $N(D) \sim 10$ million $N(D_s) \sim 14$ million

Summary

At LHCb the difference of CP violation in charm sector has been observed for decays D⁰→K⁻K⁺ and D⁰→π⁻π⁺ for 2011 dataset of L = 0.62 fb⁻¹ (LHCb-CONF-2011-061, LHCb-PAPER-2011-023, arXiv:1112.0938)

$$\Delta A_{CP} = [-0.82 \pm 0.21^{stat} \pm 0.11^{syst}]\%$$
 Significance 3.5 σ

- ♦ First evidence of CP violation in charm decays
- Contribution from CP violation in mixing is suppressed in one order of magnitude
- No evidence for CP violation in decays of D⁺→K⁻K⁺π⁺ in the 2010 dataset of L = 38 pb⁻¹ (LHCb-PAPER-2011-017, arXiv:1110.3970)
 - ♦ 2011 dataset of 1.1 fb⁻¹ is analyzed

Other LHCb charm results

Published papers:

- Search for CP violation in decays LHCB-PAPER-2011-017, arXiv:1110.3970, submitted to Phys.Rev.D
- Evidence for CP violation in time-integrated D⁰ → h⁻h⁺ decay rates LHCB-PAPER-2011-023, arXiv:1112.0938, submitted to Phys.Rev.Lett.
- Measurement of mixing and CP violation parameters in two-body charm decays LHCB-PAPER-2011-032, arXiv:1112.4698, submitted to JHEP Time dependent measurements, based on 2010 data, 29 pb⁻¹
 - 1. Ratio of lifetimes in D⁰ decays to the CP eigenstate f_{CP} ($D^0 \rightarrow K^+K^-$) with respect to decays to the CP non-eigenstate f_{non-CP} ($D^0 \rightarrow K^-\pi^+$):

$$y_{CP} = \frac{\Gamma(D^0 \to f_{CP})}{\Gamma(D^0 \to f_{non-CP})} - 1 = \frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to K^- \pi^+)} - 1$$
$$y_{CP} = (5.5 \pm 6.3^{\text{stat}} \pm 4.1^{\text{syst}}) \times 10^{-3}$$

2. Asymmetry of lifetimes in decays of D⁰ and anti-D⁰ to the CP eigenstate K⁺K⁻:

$$A_{\Gamma} \equiv \frac{\Gamma(D^{0} \to f_{CP}) - \Gamma(\bar{D^{0}} \to f_{CP})}{\Gamma(D^{0} \to f_{CP}) + \Gamma(\bar{D^{0}} \to f_{CP})} = \frac{\Gamma(D^{0} \to K^{+}K^{-}) - \Gamma(\bar{D^{0}} \to K^{+}K^{-})}{\Gamma(D^{0} \to K^{+}K^{-}) + \Gamma(\bar{D^{0}} \to K^{+}K^{-})}$$
$$A_{\Gamma} = (-5.9 \pm 5.9^{\text{stat}} \pm 2.1^{\text{syst}}) \times 10^{-3}$$

Both results on y_{CP} and A_{Γ} are in agreement with the current world averages. No evidence for indirect CP violation in charm sector has been observed.

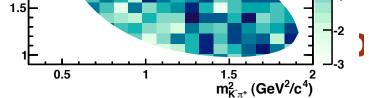
Other LHCb charm results

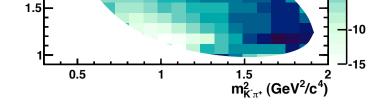
Published papers:

- Search for CP violation in decays LHCB-PAPER-2011-017, arXiv:1110.3970, submitted to Phys.Rev.D
- Evidence for CP violation in time-integrated D⁰ → h⁻h⁺ decay rates LHCB-PAPER-2011-023, arXiv:1112.0938, submitted to Phys.Rev.Lett.
- Measurement of mixing and CP violation parameters in two-body charm decays LHCB-PAPER-2011-032, arXiv:1112.4698, submitted to JHEP

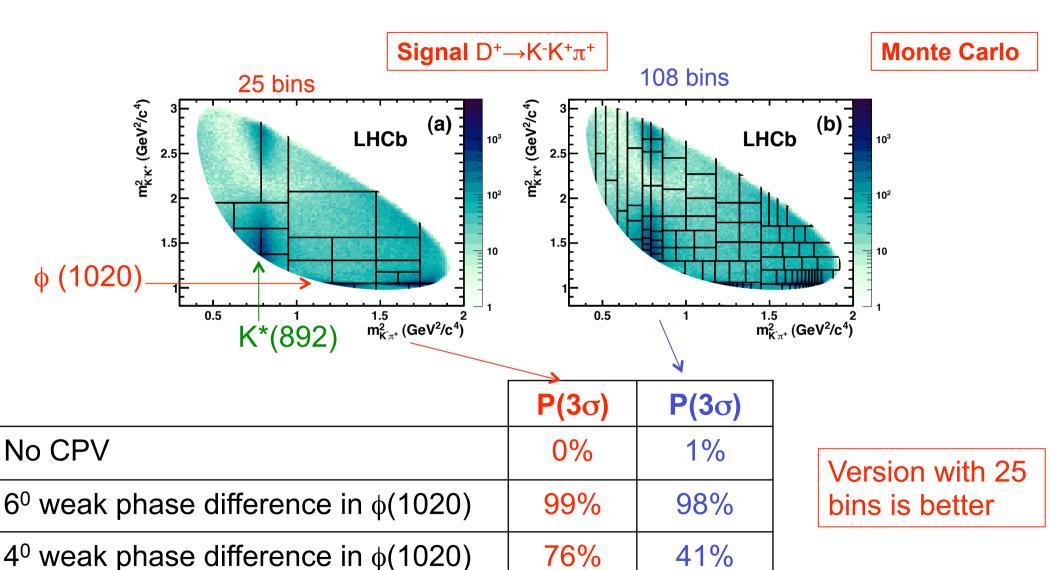
Conference notes:

2011


- A search for time-integrated CP violation in D⁰ → h⁻h⁺ decays LHCB-CONF-2011-061
- Measurement of the Charm Mixing Parameter y_{CP} in Two-Body Charm Decays LHCB-CONF-2011-054
- Measurement of the CP Violation Parameter A_{Γ} in Two-Body Charm Decays LHCB-CONF-2011-046
- A search for time-integrated CP violation in D → hh decays and a measurement of the D⁰ production asymmetry LHCB-CONF-2011-023
- Time integrated ratio of wrong-sign to right-sign $D^0 \to K\pi$ decays in 2010 data at LHCb LHCB-CONF-2011-029


2010

 Prompt charm production in collisions at √s= 7 TeV LHCB-CONF-2010-013


Backup

Bins with unrecent widths

100 the same experiments and check how many times obtained 3σ

$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix} = \begin{pmatrix} 1 & \lambda & \lambda^3 \\ -\lambda & 1 & \lambda^2 \\ -\lambda^3 & -\lambda^2 & 1 \end{pmatrix}$$