New mechanisms of charm production

Antoni Szczurek

Institute of Nuclear Physics (PAN), Cracow, Poland

Epiphany 2012

Kraków, January 9 - 11, 2012

Plan of the talk

Introduction

Nonphotonic electron production

- Hadroproduction of heavy quarks within k_t -factorization approach
- Hadronization into open heavy mesons
- Semileptonic decays of open charm and bottom
- Results for single leptons
- Kinematical correlations

Production of two $c\bar{c}$ pairs in double-parton scattering

- Exclusive central diffractive (ECD) production of $c\bar{c}$
- Formalism of theoretical predictions
- Differential cross sections at the LHC and Tevatron
- From charm quarks to D mesons

ECD vs. inclusive central diffractive (CD) mechanism

- Photon-induced $c\bar{c}$ production
- Off-shell quarks
- Conclusions and LHC era

Based on:

Łuszczak, Maciuła, Szczurek, Phys. Rev. D 79 (2009) 034009 Maciuła, Szczurek, Ślipek, Phys. Rev. D 83 (2011) 054014

Heavy quarks measurements at BNL RHIC

Phys. Rev. Lett. 97, 252002 (2006)

Phys. Rev. Lett. 98, 192301 (2007)

- direct: reconstruction of all decay products
- indirect: charm and bottom electrons/muons

- nonphotonic electrons → leptons from semileptonic decays of heavy flavoured mesons:
 D or B → X e(µ) v
- pp collisions, $\sqrt{s} = 200$ GeV, $p_t > 0.2$ GeV, $|y| \le 0.35$, PHENIX, STAR

3-step process

Hadroproduction of heavy quarks within kt-factorization approach

Dominant mechanisms of $Q\bar{Q}$ production

• Leading order processes contributing to $Q\bar{Q}$ production:

- gluon-gluon fusion dominant at high energies
- $q\bar{q}$ anihilation important only near the threshold
- some of next-to-leading order diagrams:

very important NLO contributions \rightarrow factor 2

< □ > < 同 > < 三

Hadroproduction of heavy quarks within kt-factorization approach

pQCD standard approach

collinear approximation \rightarrow transverse momenta of the incident partons are assumed to be zero

• quadrupuly differential cross section:

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} \sum_{i,j} x_1 p_i(x_1, \mu^2) \ x_2 p_j(x_2, \mu^2) \ \overline{|\mathcal{M}_{ij}|^2}$$

- p_i(x₁, µ²), p_j(x₂, µ²) standard parton distributions in hadron (e.g. CTEQ, GRV, GJR, MRST, MSTW)
- NLO on-shell matrix elements well-known

several packages:

- FONLL (Cacciari *et al.*) one particle distributions and total cross sections
- more exclusive tools PYTHIA. HERWIG, MC@NLO

Hadroproduction of heavy quarks within kt-factorization approach

k_t -factorization (semihard) approach

- charm and bottom quarks production at high energies \longrightarrow gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections

LO k_t -factorization approach $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$ $\Rightarrow Q\bar{Q}$ correlations

multi-differential cross section

$$\begin{aligned} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \sum_{l,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{lj \to Q\bar{Q}}|^2} \\ &\times \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_l(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2) \end{aligned}$$

- off-shell $\overline{|\mathcal{M}_{gg \to Q\bar{Q}}|^2} \longrightarrow$ Catani, Ciafaloni, Hautmann (very long formula)
- major part of NLO corrections automatically included
- $\mathcal{F}_i(x_1, \kappa_{1,t}^2)$, $\mathcal{F}_j(x_2, \kappa_{2,t}^2)$ unintegrated parton distributions

•
$$x_1 = \frac{m_{1,t}}{\sqrt{s}} \exp(y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(y_2),$$

 $x_2 = \frac{m_{1,t}}{\sqrt{s}} \exp(-y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(-y_2),$ where $m_{l,t} = \sqrt{p_{l,t}^2 + m_Q^2}.$

Hadroproduction of heavy quarks within kt-factorization approach

Unintegrated parton distribution functions

- k_t -factorization \rightarrow replacement: $p_k(x, \mu_F^2) \longrightarrow \mathcal{F}_k(x, \kappa_t^2, \mu_F^2)$
- PDFs → UPDFs

$$xp_k(x,\mu_F^2) = \int_0^\infty d\kappa_t^2 \mathcal{F}(x,\kappa_t^2,\mu_F^2)$$

 UPDFs - needed in less inclusive measurements which are sensitive to the transverse momentum of the parton

gg-fusion dominance \Rightarrow great test of existing unintegrated gluon densities! especially at LHC (small-x)

several models:

- Kwiecinski (CCFM, wide x-range)
- Kimber-Martin-Ryskin (higher x-values)
- Kutak-Stasto (small-x, saturation effects)
- Ivanov-Nikolaev, GBW, Karzeev-Levin, etc.

Hadronization into open heavy mesons

Fragmentation functions technique

- fragmentation functions extracted from e^+e^- data
- often used: Braaten et al., Kartvelishvili et al., Peterson et al.
- rescalling transverse momentum at a constant rapidity (angle)
- from heavy quarks to heavy mesons:

$$-\frac{d\sigma(y, p_t^M)}{dyd^2p_t^M} \approx \int \frac{D_{Q \to M}(z)}{z^2} \cdot \frac{d\sigma(y, p_t^Q)}{dyd^2p_t^Q} dz$$

where:
$$p_t^{Q} = rac{p_t^{M}}{z}$$
 and $z \in (0, 1)$

• approximation:

rapidity unchanged in the fragmentation process \rightarrow $y_{Q} \approx$ y_{M}

イロト・日間ト・日日ト・日日

Hadronization into open heavy mesons

Different models of FFs

Peterson et al.

• Braaten et al. $D_{Q \to M}(z) = N \frac{rz(1-z)^2}{(1-(1-r)z)^6} (F_1 + F_2)$ $F_1 = 6 - 18(1-2r)z + (21 - 74r + 68r^2)z^2$ $F_2 = 3(1-r)^2(1-2r_2r^2)z^4 - 2(1-r)(6-19r + 18r^2)z^3$ $r_c = 0.2, r_b = 0.07$

イロト イポト イヨト イヨト

• Kartvelishvili et al. $D_{Q \to M}(z) = N(1-z)z^{a}$ $a_{c} = 5.0, a_{b} = 14.0$

Semileptonic decays of open charm and bottom

Experimental decay functions and Monte Carlo approach

• CLEO $e^+e^- \rightarrow \Psi(3770) \rightarrow D\bar{D} \rightarrow Xev$ $BR(D^+ \rightarrow e^+v_eX)=16.13\pm0.20(stat.)\pm0.33(syst.)\%$ $BR(D^0 \rightarrow e^+v_eX)=6.46\pm0.17(stat.)\pm0.13(syst.)\%$

• **BABAR** $e^+e^- \rightarrow \Upsilon(10600) \rightarrow B\overline{B} \rightarrow Xev$ BR $(B \rightarrow ev_e X)=10.36\pm0.06(stat.)\pm0.23(syst.)\%$

Monte Carlo =>> directions and lengths of outgoing leptons momenta

• Our input \implies experimental decay functions: $f_{CLEO}(p), f_{BABAR}(p)$

• approximation: $D \text{ mesons } (D^{\pm}, D^{0}, \overline{D^{0}}, D^{\pm}_{S}, D^{*0}, D^{*\pm}, D^{*\pm}_{S})$ $B \text{ mesons } (B^{\pm}, B^{0}, \overline{D^{0}}, B^{0}_{S}, \overline{B^{0}}, B^{*}, B^{*}_{S})$ $BR(D \text{ and } B \longrightarrow X e v \approx 10\%)$

(日)

Effects of hadronization and decay

- degradation of transverse momentum, much softer spectra for electrons
- broader distributions in rapidity at small transverse momenta

A D > A A + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Nonphotonic electron production Results for single leptons Kinematical correlations Production of two cc pairs in double-parton scatt

pt distributions vs. PHENIX and STAR data

Image: A math a math

• $q\bar{q}$ contributions are negligible

Introduction Nonphotonic electron production Results for single leptons Kinematical correlations Production of two cc pairs in double-parton scatt

< □ > < 同 > < 回</p>

pt distributions vs. PHENIX and STAR data

• very strong dependence on μ_R and μ_F

Uncertainties due to factorization and renormalization scales

Uncertainties due to heavy quarks masses

charm quarks are much more sensitive to the m_Q value

ヘロト 人間 とくほとくほう

Introduction Nonphotonic electron production Results for single leptons Kinematical correlations Production of two cc pairs in double-parton scatt

(日)

LO k_t -factorization vs. FONLL

- large uncertainties \rightarrow good description only with upper limits
- LO k_t -factorization results comparable with FONLL at $p_t > 2$ GeV BUT some missing strength at low transverse momenta

Introduction Nonphotonic electron production Results for single leptons Kinematical correlations Production of two cc pairs in double-parton scatt

How to improve LO k_t -factorization?

- to apply other UGDFs (KMR, Kutak-Stasto)
- some of mechanisms (e.g. flavour excitation) which are automatically included in NLO processes should be included by hand to improve LO calculations
- single quark production in the k_t -factorization
- large uncertainties → good description only with upper limits
- LO k_t -factorization results comparable with FONLL at $p_t > 2$ GeV BUT some missing strength at low transverse momenta (日)

Inclusive measurements of e^+e^- pairs

• e^+e^- pair invariant mass spectrum (0 - 8 GeV) PHENIX, p+p @ $\sqrt{s} = 200$ GeV, A. Adare, et al., Phys. Lett. **B 670** (2009), 313-320

- dielectron mass spectrum dominated by semileptonic decays of charm and bottom mesons → nonphotonic electrons
- alternative method → dielectron correlations
- a new tool for testing pQCD techniques, fragmentation functions and semileptonic decays of D and B mesons

(日)

Cross section for nonphotonic e^+e^- pairs production

• multi-differential cross section:

$$\begin{aligned} \frac{d\sigma}{dy_{1}dp_{1t}dy_{2}dp_{2t}d\phi} &= \sum_{l,j} \int \frac{d^{2}\kappa_{1,t}}{\pi} \frac{d^{2}\kappa_{2,t}}{\pi} \frac{1}{16\pi^{2}(x_{1}x_{2}s)^{2}} \overline{|\mathcal{M}_{lj\to Q\bar{Q}}|^{2}} \\ &\times \delta^{2} \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_{i}(x_{1},\kappa_{1,t}^{2}) \mathcal{F}_{j}(x_{2},\kappa_{2,t}^{2}) \end{aligned}$$

hadronization of the quark/antiquark pair:

$$\frac{d\sigma(y_1, p_{1t}^M, y_2, p_{2t}^M, \phi)}{dy_1 dp_{1t}^M dy_2 dp_{2t}^M d\phi} \approx \int \frac{D_{Q \to M}(z_1)}{z_1} \cdot \frac{D_{\bar{Q} \to \bar{M}}(z_2)}{z_2} \cdot \frac{d\sigma(y_1, p_{1t}^Q, y_2, p_{2t}^Q, \phi)}{dy_1 dp_{1t}^Q dy_2 dp_{2t}^Q d\phi} dz_1 dz_2$$

where:
$$p_{1t}^{Q} = \frac{p_{1t}^{M}}{z_{1}}$$
, $p_{2t}^{Q} = \frac{p_{2t}^{M}}{z_{2}}$ and $z_{1}, z_{2} \in (0, 1)$

- the same experimental decay functions with proper normalization: BR(M \rightarrow e) \cdot BR(M \rightarrow e) \approx 0.01
- new differential distributions: $\varphi_{e^+e^-}$, $M_{e^+e^-}$, $p_{t,sum}$

A D > A P > A D > A D >

(日)

Related processes: Drell-Yan mechanism

- Szczurek, G. Ślipek Phys. Rev. D 78 (2008) 114007
- k_t-factorization approach with Kwieciński UPDFs
- O-th and 1-st order ag-anihilation and 1-st order Compton scattering
- 0-th order Drell-Yan cross section

$$\begin{aligned} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1t} d^2 p_{2t}} &= \sum_{t} \int \frac{d^2 \kappa_{1t}}{\pi} \frac{d^2 \kappa_{2t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \, \delta^2 \left(\vec{\kappa}_{1t} + \vec{\kappa}_{2t} - \vec{p}_{1t} - \vec{p}_{2t}\right) \\ & \left[\mathcal{F}_{q_t} \left(x_1, \kappa_{1t}^2, \mu_F^2 \right) \mathcal{F}_{\bar{q}_t} \left(x_2, \kappa_{2t}^2, \mu_F^2 \right) \frac{|M(q\bar{q} \to e^+e^-)|^2}{|M(q\bar{q} \to e^+e^-)|^2} \right] \\ & + \mathcal{F}_{\bar{q}_t} \left(x_1, \kappa_{1t}^2, \mu_F^2 \right) \mathcal{F}_{q_t} \left(x_2, \kappa_{2t}^2, \mu_F^2 \right) \frac{|M(q\bar{q} \to e^+e^-)|^2}{|M(q\bar{q} \to e^+e^-)|^2} \right] \end{aligned}$$

unintegrated guark distributions ٠

Related processes: elastic and inelastic $\gamma\gamma \rightarrow e^+e^-$ reactions

- $pp \rightarrow ppe^+e^$
 - $p_1 \longrightarrow p_1$ $p_1 \longrightarrow p_1$ $p_2 \longrightarrow e^$ $p_2 \longrightarrow p_2$ $p_2 \longrightarrow p_2$

• $pp \rightarrow X_1 X_2 e^+ e^-$

- exact momentum space calculations with 4-body phase space
- consistent with LPAIR Monte Carlo package

- collinear kinematics
- MRST 2004

(Martin-Roberts-Stirling-Thorne) photon distributions in nucleon

イロト イポト イヨト イヨト

Dilepton invariant mass spectrum

(日)

similar description of the data like in the single lepton case

Dilepton invariant mass spectrum

Kutak-Stasto UGDF dedicated for smaller x-values

Dilepton invariant mass spectrum

very good description of the data even at small invariant masses

Uncertainties - μ_F , μ_R scale dependence

< 日 > < 同 > <

Uncertainties - quark mass dependence

< □ > < 同 > <

Sensitivity to the fragmentation function

 this source of uncertainties can be neglected, especially at low-p Э

(日)

500

Transverse momenta correlations

• e^+e^- decorrelation during each step of calculation

Azimuthal and $p_{t,sum}$ correlations

 azimuthal angle between outgoing leptons

LHC, charmed mesons

ALICE, LHCb (LHCb-CONF-2010-013)

LHC, charmed mesons

Kimber-Martin-Ryskin, Jung, Kutak-Stasto UGDF

LHC, charmed mesons

something missing?

KMR UGDF, scale dependence

 $\mu^2 = M_{c\bar{c}}^2$ or m_t^2

KMR UGDF, scale dependence

 $\mu^2 = M_{c\bar{c}}^2$ or m_t^2

Production of two $c\bar{c}$ pairs in double-parton scattering

Consider two hard (parton) scatterings

Luszczak, Maciula, Szczurek, arXiv:1111.3255

(日)

Formalism

Consider reaction: $pp \rightarrow c\bar{c}c\bar{c}X$ Modeling double-parton scattering Factorized form:

$$\sigma^{\text{DPS}}(pp
ightarrow c\bar{c}c\bar{c}X) = rac{1}{2\sigma_{ ext{eff}}}\sigma^{ ext{SPS}}(pp
ightarrow c\bar{c}X_1) \cdot \sigma^{ ext{SPS}}(pp
ightarrow c\bar{c}X_2).$$

The simple formula can be generalized to include differential distributions

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_{1t} dy_3 dy_4 d^2 p_{2t}} = \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma}{dy_1 dy_2 d^2 p_{1t}} \cdot \frac{d\sigma}{dy_3 dy_4 d^2 p_{2t}} \cdot \frac{\sigma_{\text{eff}}}{dy_3 dy_4 d^2 p_{2t}} \cdot \frac{\sigma_{\text{eff}}}{dy_4 dy_4 d^2 p_{2t}} \cdot \frac{\sigma_{\text{eff}}}$$

Formalism

$$d\sigma^{DPS} = \frac{1}{2\sigma_{eff}} F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2) F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2) d\sigma_{gg \to c\bar{c}}(x_1, x_1', \mu_1^2) d\sigma_{gg \to c\bar{c}}(x_2, x_2', \mu_2^2) dx_1 dx_2 dx_1' dx_2'.$$

 $F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2), F_{gg}(x_1'x_2', \mu_1^2, \mu_2^2)$ are called double parton distributions

dPDF are subjected to special evolution equations single scale evolution: Snigireev double scale evolution: Ceccopieri, Gaunt-Stirling

(日)

DPS results

Inclusive cross section more difficult to calculate $\sigma_{SS}, 2\sigma_{DS} < \sigma_c^{inclusive} < \sigma_{SS} + 2\sigma_{DS}$

DPS results

In the factorized model inclusive double-scattering distributions in y and p_t are identical as for single scattering.

Introduction Nonphotonic electron production Results for single leptons Kinematical correlations Production of two cc pairs in double-parton scatters occurrent of two cc pairs in double-parton scatters occurrent occu

DPS results

DPS: large rapidity differences, large invariant masses

- Not possible for quarks (antiquarks)
- Difficult for mesons
- Nonphotonic electrons (muons) ?

(日)

Formalism of theoretical predictions

Kaidalov-Khoze-Martin-Ryskin approach

The amplitude for
$$p p \rightarrow p p Q \overline{Q}$$
 :

$$\mathcal{M}_{\hat{n}_{q}\hat{n}_{\bar{q}}} = s \cdot \pi^{2} \frac{1}{2} \frac{\delta_{c_{1}c_{2}}}{N_{c}^{2} - 1} \Im \int d^{2}q_{0\perp} V_{\hat{n}_{q}\hat{n}_{\bar{q}}}^{c_{1}c_{2}}$$

$$\times \frac{f_{g}^{\text{off}}(x', x_{1}, q_{0\perp}^{2}, q_{1\perp}^{2}, t_{1}) f_{g}^{\text{off}}(x', x_{2}, q_{0\perp}^{2}, q_{2\perp}^{2}, t_{2})}{q_{0\perp}^{2} q_{1\perp}^{2} q_{2\perp}^{2}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- k_t -factorization approach with exact off-shell $g^*g^* \to Q\bar{Q}$ matrix element (without any approximations and selection rules)
- off-diagonal unintegrated gluon distributions
- genuine 4-body reaction with exact kinematics in the full phase space:

$$d\sigma = \frac{1}{2s} |\mathcal{M}_{2\to4}|^2 (2\pi)^4 \delta^4 (p_a + p_b - p_1 - p_2 - p_3 - p_4) \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4}$$

Formalism of theoretical predictions

 $g^*g^*
ightarrow Q ar Q$ matrix element

- gluon-gluon fusion dominant at high energies
- Effective vertex in QMRK approach
- 3-gluon vertex drops out in projection to the color singlet final state

Formalism of theoretical predictions

Off-diagonal unintegrated gluon distributions

effective f.f.

 $b = 4 \, GeV^{-2}$

of rapidity gaps)

 $F(t) = \exp(bt/2),$

Formalism of theoretical predictions

Sudakov form factor and gap survival probability

 suppresion of real emissions from the active gluon during the evolution so the rapidity gap survive (probability of not emitting any extra partons)

• crucial sensitivity to upper and lower scales q_{\perp}^2 , μ^2

Formalism of theoretical predictions

Sudakov form factor and gap survival probability

 suppresion of real emissions from the active gluon during the evolution so the rapidity gap survive (probability of not emitting any extra partons)

$$\begin{split} T_{g}(q_{\perp}^{2},\mu^{2}) &= \exp \left(-\int_{q_{\perp}^{2}}^{\mu^{2}} \frac{d\mathbf{k}_{\perp}^{2}}{\mathbf{k}_{\perp}^{2}} \frac{d_{s}(k_{\perp}^{2})}{2\pi} \times \right. \\ &\times \qquad \int_{0}^{1-\Delta} \left[z P_{gg}(z) + \sum_{q} P_{qg}(z) \right] dz \right) \\ \Delta &= \frac{k_{\perp}}{k_{\perp} + M_{q\bar{q}}} \end{split}$$

• crucial sensitivity to upper and lower scales q_{\perp}^2 , μ^2

- absorption corrections (soft rescattering effects between interacting protons)
- not universal value → depends on collision energy and typical proton transverse momenta

•
$$S_g^{LHC} = 0.03$$
, $S_g^{TEV} = 0.1$, $S_g^{RHIC} = 0.13$

Differential cross sections at the LHC and Tevatron

LHC @ $\sqrt{s} = 14$ TeV

- some uncertainties due to PDFs
- different quark helicity states

A D > A A + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Differential cross sections at the LHC and Tevatron

LHC @ $\sqrt{s} = 14$ TeV

Differential cross sections at the LHC and Tevatron

LHC @ $\sqrt{s} = 14$ TeV

- quark distributions fully perturbative, opposite sign helicities dominates at large transverse momenta
- proton distributions much narrower (below 1 GeV) and controlled by non-perturbative proton form factor → sensitive to internal structure of the proton

(日)

Differential cross sections at the LHC and Tevatron

LHC @ $\sqrt{s} = 14 \text{ TeV}$

 quarks preference for the back-to-back configuration, opposite helicities much more correlated

・ロト ・ 同ト ・ ヨト ・

protons almost decorrelated

Differential cross sections at the LHC and Tevatron

Tevatron @ $\sqrt{s} = 1.96$ TeV

<ロ> (日) (日) (日) (日) (日)

• exclusive/inclusive $\sim 0.1 - 1\%$

M_{cc}, p_t, p_{t,sum} distributions much steeper, narrower

Differential cross sections at the LHC and Tevatron

Tevatron @ $\sqrt{s} = 1.96$ TeV

<ロ> (日) (日) (日) (日) (日)

500

• exclusive/inclusive $\sim 0.1 - 1\%$

M_{cc}, p_t, p_{t,sum} distributions much steeper, narrower

From charm quarks to D mesons

Fragmentation functions (FF) technique

- phenomenology \rightarrow fragmentation functions extracted from e^+e^- data
- often used: Braaten et al., Kartvelishvili et al., Peterson et al.
- numerically performed by rescalling transverse momentum at a constant rapidity (angle)
- from heavy quarks to heavy mesons:

$$\frac{d\sigma(y_{1}, p_{1t}^{M}, y_{2}, p_{2t}^{M}, \phi)}{dy_{1}dp_{1t}^{M}dy_{2}dp_{2t}^{M}d\phi} \approx \int \frac{D_{Q \to M}(z_{1})}{z_{1}} \cdot \frac{D_{\bar{Q} \to \bar{M}}(z_{2})}{z_{2}} \cdot \frac{d\sigma(y_{1}, p_{1t}^{Q}, y_{2}, p_{2t}^{Q}, \phi)}{dy_{1}dp_{1t}^{Q}dy_{2}dp_{2t}^{Q}d\phi} dz_{1}dz_{2}$$

where: $p_{1t}^{Q} = \frac{p_{1t}^{M}}{z_{1}}, p_{2t}^{Q} = \frac{p_{2t}^{M}}{z_{2}}$ and $z_{1,2} \in (0, 1)$

• approximation:

rapidity unchanged in the fragmentation process $\rightarrow y_Q = y_M$

(日)

From charm quarks to D mesons

 $p_{\overline{\sigma}_{L}}(\text{GeV})$

Numerical effects of the fragmentation

- sufficient approach for rough predictions before having exclusive Monte Carlo hadronization
- decorrelation during fragmentation process
- work in progress: $c \rightarrow D^+ \rightarrow K^- \pi^+ \pi^+ (BF \sim 9.51\%)$ $c \rightarrow D^0 \rightarrow K^- \pi^+ (BF \sim 3.80\%)$ $c \rightarrow D^0 \rightarrow 2$ -prongs (BF $\sim 67.0\%)$ $c \rightarrow D_s^+ \rightarrow K^+ K^- \pi^+ (BF \sim 5.2\%)$

Inclusive Double Pomeron Exchange

- Ingelman and Schlein approach
- well defined partonic structure of Pomeron
- hard process takes place in a Pomeron-Pomeron interactions

$$\frac{d\sigma_{DD}}{dy_1 dy_2 dp_t^2} = K \frac{\left| M \right|^2}{16\pi^2 \hat{s}^2} \left[\left(x_1 q_t^D(x_1, \mu^2) x_2 \bar{q}_t^D(x_2, \mu^2) \right) + \left(x_1 \bar{q}_t^D(x_1, \mu^2) x_2 q_t^D(x_2, \mu^2) \right) \right]$$

$$q_{f}^{D}(x,\mu^{2}) = \int dx_{IP} d\beta \, \delta(x - x_{IP}\beta) q_{f/IP}(\beta,\mu^{2}) \, f_{IP}(x_{IP}) = \int_{x}^{1} \frac{dx_{IP}}{x_{IP}} \, f_{IP}(x_{IP}) q_{f/IP}(\frac{x}{x_{IP}},\mu^{2}) \, dx_{IP}(x_{IP}) q_{f/IP}(x_{IP}) q_{f/IP}(x$$

convolution of the flux of Pomerons $f_{IP}(x_{IP})$ and the parton distribution in the Pomeron $q_{f/IP}(\beta, \beta)$

RHIC @ $\sqrt{s} = 500 \, \text{GeV}$

◆□▶ ◆圖▶ ◆注▶ ◆注▶

500

- dashed black inclusive central diffraction
- solid red and green exclusive central diffraction

LHC @ $\sqrt{s} = 14 \text{ TeV}$

huge difference between LO or NLO PDFs for exclusive mechanism
 ⇒ good description of the exclusive dijets data with NLO PDFs

◆□▶ ◆圖▶ ◆注▶ ◆注▶

QCD mechanisms

Standard QCD LO mechanisms:

Let us considered photon-induced mechanisms

Photon-induced mechanisms

< □ > < 同 > <

Photon as a parton of the proton

The factorization of the QED-induced collinear divergences leads to QED-corrected evolution equations for the parton distributions of the proton.

$$\frac{\partial q_{i}(x,\mu^{2})}{\partial \log \mu^{2}} = \frac{a_{s}}{2\pi} \int_{x}^{1} \frac{dy}{y} \Big\{ P_{qq}(y) \ q_{i}(\frac{x}{y},\mu^{2}) + P_{qg}(y) \ g(\frac{x}{y},\mu^{2}) \Big\} \\ + \frac{a}{2\pi} \int_{x}^{1} \frac{dy}{y} \Big\{ \tilde{P}_{qq}(y) \ e_{i}^{2} q_{i}(\frac{x}{y},\mu^{2}) + P_{qy}(y) \ e_{i}^{2} \gamma(\frac{x}{y},\mu^{2}) \Big\} \\ \frac{\partial g(x,\mu^{2})}{\partial \log \mu^{2}} = \frac{a_{s}}{2\pi} \int_{x}^{1} \frac{dy}{y} \Big\{ P_{gq}(y) \ \sum_{j} q_{j}(\frac{x}{y},\mu^{2}) + P_{gg}(y) \ g(\frac{x}{y},\mu^{2}) \Big\} \\ \frac{\partial \gamma(x,\mu^{2})}{\partial \log \mu^{2}} = \frac{a}{2\pi} \int_{x}^{1} \frac{dy}{y} \Big\{ P_{yq}(y) \ \sum_{j} e_{j}^{2} q_{j}(\frac{x}{y},\mu^{2}) + P_{yy}(y) \ \gamma(\frac{x}{y},\mu^{2}) \Big\} .$$

ъ

Distributions in transverse momentum

Luszczak, Maciula, Szczurek, Phys. Rev. D84 (2011) 4018

ヘロト 人間 とくほとくほう

Distributions in rapidity

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ○日

Off-shell quarks and antiquarks

$$\begin{split} \sigma_{pp \to pp \Theta \bar{\Theta}} &= \int dm_1 dm_2 \, \rho(m_1) \rho(m_2) \int dy_1 dy_2 d^2 p_t \\ const & \left[x_1 g_1(x_1, \mu_F^2) x_2 g_2(x_2, \mu^2) | \mathcal{M}_{gg \to \Theta \bar{\Theta}}(m_1, m_2) |^2 \right. \\ &+ x_1 q_1(x_1, \mu_F^2) x_2 \bar{q}_2(x_2, \mu_F^2) | \mathcal{M}_{q\bar{q} \to \Theta \bar{\Theta}}(m_1, m_2) |^2 \\ &+ x_1 \bar{q}_1(x_1, \mu_F^2) x_2 q_2(x_2, \mu_F^2) | \mathcal{M}_{q\bar{q} \to \Theta \bar{\Theta}}(m_1, m_2) |^2 \end{split}$$

 $\rho(m_1), \rho(m_2)$ distribution of quark(antiquark) mass we take log-normal distributions

Off-shell quarks

Now we have two-dim distribution in quark (m_1) and antiquark (m_2) masses

left: gg midle: $q\bar{q}(pp)$ right: $q\bar{q}(p\bar{p})$ W =20 GeV

Off-shell quarks

left: gg, $q\bar{q}(pp)$, $q\bar{q}(p\bar{p})$ large effect at small energies right: pp (solid), $p\bar{p}$ (dashed)

イロト イポト イヨト イヨト

Off-shell quarks

left: gg, $q\bar{q}(pp)$, $q\bar{q}(p\bar{p})$ W = 20 GeV

right: pp (solid), $p\bar{p}$ (dashed)

ヘロト 人間 とくほとくほう

Off-shell quarks

left: gg, $q\bar{q}(pp)$, $q\bar{q}(p\bar{p})$ W =20 GeV

right: pp (solid), pp (dashed)

◆□▶ ◆圖▶ ◆注▶ ◆注▶

charm/bottom cross section at LHC

Conclusions:

- very good agreement with PHENIX data using KMR UGDFs
- electron-hadron correlations → way to separate charm and bottom contributions

A. Mischke, Phys. Lett. B 671 (2009) 361

< □ > < 同 > < 回 >

charm/bottom cross section at LHC

Conclusions:

- very good agreement with PHENIX data using KMR UGDFs
- electron-hadron correlations \rightarrow way to ٠ separate charm and bottom contributions

A. Mischke, Phys. Lett. B 671 (2009) 361

I HC era:

- nonphotonic electrons at LHC \Rightarrow selection of UGDFs at much smaller x-values
- charm and bottom at LHCb in unique kinematical region: $2 \leq |\eta| \leq 6$, $\sqrt{s} = 7 \text{ TeV} \Rightarrow$ very small x region!!!

Conclusions

• Huge contribution of double-parton scattering for $pp \rightarrow (c\bar{c})(c\bar{c})X$.

Go to mesons and nonphotonic electrons (muons).

- $pp \rightarrow p(c\bar{c})p$ requires Monte Carlo studies to understand whether it can be measured.
- Single and central diffractive production should be measured.
- Photon-induced contributions are small (\sim 1 %).
- off-shell cc̄ production ⇒ systematic studies at low energies (RHIC low-energy scan?)

Thank You for attention!