Rare decays at LHCb

Fatima Soomro LNF - INFN On behalf of the LHC*b* collaboration

January 10, 2012

Introduction

Q Rare decays and LHCb $B_s \rightarrow \mu^+ \mu^ B \rightarrow V(\gamma, II)$

Other searches and conclusions
 Other rare decay searches
 Conclusions and outlook

Fatima Soomro (LNF - INFN)

VELC

noint

– 5m

Provides bending for

momentum determination

10m

Tracking stations

5m

15m

Calorimeter systems

z

proton

20m

Other searches and conclusions

Introduction

LHCb Detector operation

2011, a great LHCb year Stored more than a fb^{-1} on tape

LHCb Integrated Luminosity at 3.5 TeV in 2011

Detector efficiency > 90%

Integrated LHCb Efficiency breakdown in 2011

Other searches and conclusions

Introduction

LHCb Trigger

Flexible and efficient trigger, allows for relatively soft P_T cut for muon lines:

L0 single μ : $P_T > 1.5 \text{ GeV}$, HLT single μ : $P_T > 1.0 \text{ GeV}$ combined with impact parameter cut

important for many rare decays analyses.

Muon trigger efficiency (data)

- from $J/\psi \rightarrow \mu\mu$ 82.3 \pm 0.2 \pm 3.8
- convolute on (MC) B_s → μ⁺μ⁻ muon spectrum: 86.3±0.5±3.9

Dedicated photon lines in L0 and HLT. Important for $B \rightarrow V\gamma$ decays

Other searches and conclusions

Physics in rare decays

• Flavour changing neutral currents (FCNC) only allowed via loops in the Standard Model (SM) dominated by

 \Rightarrow sensitive probes of New Physics (NP)

Other searches and conclusions

Physics in rare decays

• Flavour changing neutral currents (FCNC) only allowed via loops in the Standard Model (SM) dominated by

Ο_{7γ} Ο_{9,10}

 \Rightarrow sensitive probes of New Physics (NP)

• For example $B \to \mu^+ \mu^-$ is a FCNC, in the SM dominated by the helicity suppressed operator $(\propto m_\mu/M_{B_q})$ $BR(B \to \mu^+ \mu^-) \propto [|V_{tb}|^* |V_{tq}|]^2 \left[M_{B_q}^2 \left(\sqrt{1 - \frac{4m_\mu^2}{M_{B_q}^2}} \right) \left(\frac{C_s - \mu_q C'_s}{1 + \mu_q} \right) + M_{B_q} \left(\frac{C_p - \mu_q C'_p}{1 + \mu_q} \right) + \frac{2m_\mu}{M_{B_q}} (C_A - C'_A) \right]$

 \Rightarrow NP contribution in scalar and pseudo scalar operators can enhance the BR

LHCD

$B_s \rightarrow \mu^+ \mu^-$: experimental status

Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

Implications of latest LHCb $B_s \rightarrow \mu^+ \mu^-$ results

Impact on NP models: (based on [arXiv:1108.3018]) \Rightarrow More powerful than direct searches for some NP scenarios

Other searches and conclusions

$B_s \rightarrow \mu^+ \mu^-$

$B_s \rightarrow \mu^+ \mu^-$: LHCb analysis strategy

• Perform the analysis in a 2D plane of $M_{\mu\mu}$ and a multivariate discriminant obtained by using a Boosted Decision Tree (BDT) with TMVA.

$B_s \rightarrow \mu^+ \mu^-$: LHCb analysis strategy

• Perform the analysis in a 2D plane of $M_{\mu\mu}$ and a multivariate discriminant obtained by using a Boosted Decision Tree (BDT) with TMVA.

In each bin of the 2D plane, the compatibility of the observed events with background only and background + SM signal hypotheses is calculated, the final limit computed using the CLs method (link)

$B_s \rightarrow \mu^+ \mu^-$: LHCb analysis strategy

• Perform the analysis in a 2D plane of $M_{\mu\mu}$ and a multivariate discriminant obtained by using a Boosted Decision Tree (BDT) with TMVA.

- In each bin of the 2D plane, the compatibility of the observed events with background only and background + SM signal hypotheses is calculated, the final limit computed using the CLs method (link)
- This is a blind analysis $\Rightarrow B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^$ signal regions are only accessed after analysis is approved by the collaboration

$B_s \rightarrow \mu^+ \mu^-$: LHCb analysis strategy (Calibration)

• The BDT is trained on MC and calibrated on data using $B \rightarrow HH$ events for signal and $B \rightarrow \mu^+\mu^-$ mass side bands for background. • Resolution and mean of the signal mass pdf: extrapolate from di μ resonances and $B_d \rightarrow K\pi$

$B_s \rightarrow \mu^+ \mu^-$: LHCb analysis strategy (Calibration)

• The BDT is trained on MC and calibrated on data using $B \rightarrow HH$ events for signal and $B \rightarrow \mu^+\mu^-$ mass side bands for background. • Resolution and mean of the signal mass pdf: extrapolate from di μ resonances and $B_d \rightarrow K\pi$ • Background mass pdf:

 \Rightarrow combinatorial background is extrapolated from data side bands

 \Rightarrow peaking background: hadron mis identification obtained from $D0 \rightarrow K\pi$ in data, normalization from $B \rightarrow HH$ in data and the line shape from $B \rightarrow HH$ MC where both hadrons are mis identified

$B_s \rightarrow \mu^+ \mu^-$

$B_s \rightarrow \mu^+ \mu^-$: LHCb analysis strategy (Normalization)

Use $B_s \rightarrow J/\psi \phi$, $B^+ \rightarrow J/\psi K$ and $B_d \rightarrow K \pi$, each with different systematics. Final result obtained with a weighted average.

$$BR = BR_{cal} \times \frac{\epsilon_{cal}^{\text{REC}} \epsilon_{cal}^{\text{SEL}|\text{REC}}}{\epsilon_{sig}^{\text{REC}} \epsilon_{sig}^{\text{SEL}|\text{REC}}} \frac{\epsilon_{cal}^{\text{TRIG}|\text{SEL}}}{\epsilon_{sig}^{\text{TRIG}|\text{SEL}}} \times \frac{f_{cal}}{f_{B_s}} \times \frac{N_{B_s \to \mu^+ \mu^-}}{N_{cal}}$$

· Reconstruction and selection efficiencies from MC, cross checked with data

- Obtained from data with J/ψ , reweighted for signal spectrum
- Measured at LHCb, $\frac{f_s}{f_d} = 0.253 \pm 0.017 \pm 0.017 \pm 0.020$ [PRL 107 (2011)]

Other searches and conclusions 0 0

 $B_s \rightarrow \mu^+ \mu^-$

$B_s \rightarrow \mu^+ \mu^-$: Results and future outlook

World's best limit: LHCb with 0.37 fb⁻¹

$B_s \rightarrow \mu^+ \mu^-$: Results and future outlook

World's best limit: LHCb with 0.37 fb^{-1}

Analysis being updated with the 1.02 fb^{-1} LHCb data on tape \Rightarrow Good chance of a 3σ discovery!

BR exclusion and discovery projections

$B \rightarrow V(\gamma, II)$

Introduction

2 Rare decays and LHCb $B_s \rightarrow \mu^+ \mu^ B \rightarrow V(\gamma, II)$

Other searches and conclusions Other rare decay searches Conclusions and outlook

	Rare decays and LHCb	Other searches and conclusions
	0000000 0●0000000000	
D N (((1))		

$B ightarrow V(\gamma, II)$ decays

- \circ Dominant contribution from \textit{O}_{7} and $\textit{O}_{9,10}$ in the SM.
- \circ Have a rich phenomenology and are sensitive to many NP attributes.
- \circ LHCb has a wide $b \to s \ell^+ \ell^ (b \to s \gamma)$ program covering but not limited to

Measure	In decay	Motivation
	$B_d o K^{*0} \mu \mu$	Mass scale,
Differential BR and	$B^+ ightarrow K^+ \mu \mu$	couplings and
angular distributions	$\Lambda_b \to \Lambda^{(*)} \mu \mu$	helicity structure
	$B_s o \phi \mu \mu$	of NP operators
Ispacin and CR asymmetries	$B_d ightarrow K^{*0} \mu \mu$	Very small in SM, can
ispositi and CF asymmetries	$B^+ ightarrow K^+ \mu \mu$	be enhanced due to NP
Time dependent CP asymmetry	$B_s o \phi \gamma$	Helicity structure of NP

 \Rightarrow Will discuss $A_{\rm FB}$ in $B_d \to K^{*0} \mu \mu$ and briefly some $B \to V \gamma$ analyses

$A_{ m FB}$ in $B_d o K^{*0} \mu \mu$: Analysis strategy (1/3)

Perform a simultaneous fit to mass, θ_I and θ_K projections in bins of q^2 (invariant mass of the μ pair) to extract $A_{\rm FB}$ and F_L

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_I \mathrm{d} q^2} = \frac{3}{4} \mathrm{F}_L (1 - \cos^2 \theta_I) + \frac{3}{8} (1 - \mathrm{F}_L) (1 + \cos^2 \theta_I) + A_{\mathrm{FB}} \cos \theta_I$$
$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_K \mathrm{d} q^2} = \frac{3}{2} \mathrm{F}_L \cos^2 \theta_K + \frac{3}{4} (1 - \mathrm{F}_L) (1 - \cos^2 \theta_K)$$

$B \rightarrow V(\gamma, II)$

$A_{\rm FB}$ in $B_d \to K^{*0} \mu \mu$: Analysis strategy (2/3)

Fatima Soomro (LNF - INFN)

$A_{ m FB}$ in $B_d o K^{*0} \mu \mu$: Analysis strategy (3/3)

 \circ Combinatorial background: use BDT trained on $B_d \rightarrow J/\psi {\cal K}^{*0}$ and background candidates from the upper mass sideband in the 2010 data

 \circ Specific background: use PID cuts to reduce peaking backgrounds to < 3% of signal ($B_d \leftrightarrow \overline{B_d} < 0.7\%$)

 Angular acceptance due to detector and selection effect: assign event by event weights

 \Rightarrow Method validated on $B_d \rightarrow J/\psi K^{*0}$ with known angular distribution

Other searches and conclusions

$B \rightarrow V(\gamma, II)$

Theory from [arXiv:1105.0376] and the references therein

Fatima Soomro (LNF - INFN)

January 10, 2012 19 / 38

Other searches and conclusions

$B \rightarrow V(\gamma, II)$

BaBar [PRD 79 (2009)] BELLE [PRL 103 (2009)] CDF [PRL 106 (2011)]

Fatima Soomro (LNF - INFN)

Epiphany 2012, Krakow

20 / 38

HCD

$B \to V(\gamma, II)$

$B_d \to K^{*0} \mu \mu$: Outlook

• LHCb, 0.3 fb $^{-1}$ \Rightarrow world's best $A_{\rm FB}$, F_L and dBR/dq^2 measurements

$B \rightarrow V(\gamma, II)$

$B_d \rightarrow K^{*0} \mu \mu$: Outlook

• LHCb, 0.3 fb⁻¹ \Rightarrow world's best $A_{\rm FB}$, F_L and dBR/dq^2 measurements

- Paper with 0.37 pb⁻¹ submitted to PRL already [arXiv:1112:3515], analysis to be updated with 1 fb⁻¹
 → Scaling the yield from the 0.37 fb⁻¹ to 1 fb⁻¹: A_{FB} and F_L will not be systematically limited
 - \rightarrow Measurement of other observables A_T^2 and $A_{(Im)}$ Stay tuned!

$B \rightarrow V \gamma$ decays

• Can probe the structure of NP operators [reference] by measuring the photon polarization in $\bar{B} \rightarrow V_{CP}\gamma$. The photon is predominantly left handed because

 F_L and F_R are amplitudes for left and right handed photons in a b decay (\bar{B} meson) \rightarrow Ratio of "wrong" helicity photons in predicted to be $\sim 0.4\%$ in the SM

 \rightarrow Can be up to 10% in some NP models e.g. LR symmetric model and unconstrained MSSM (NB this ratio can be large without affecting the BR)

Many other measurements possible, like the BR(B_s → φγ) which is known to ~ 35%, ratio of BR(B_d → K*γ/B_s → φγ), direct CP asymmetry (A_{CP,dir}) in B_d → K*γ

$B \rightarrow V\gamma$: Photon polarization status and prospects

• Results from *B* factories using $B \to K^*(\to K^0_s \pi^0) \gamma$ (HFAG)

 $sin2\psi = 0.28 \pm 0.44$

• LHCb can reach $\sigma_{sin2\psi} \sim (0.22) 0.2$ with (un)tagged analyses of $B_s \rightarrow \phi \gamma$ (needs > 2 fb⁻¹).

Will therefore describe ongoing analyses:

The ratio
$$rac{BR(B_d o K^*\gamma)}{BR(B_s o \phi\gamma)}$$
 and $\mathcal{A}_{CP,dir}$ in $B_d o K^*\gamma$

$B \rightarrow V(\gamma, II)$

 $B \rightarrow V\gamma$: current LHCb analyses (1/2)

$$\begin{array}{lll} \frac{BR(B_d \to K^*\gamma)}{BR(B_s \to \phi\gamma)} & = & \frac{N_{B_d \to K^*\gamma}}{N_{B_s \to \phi\gamma}} \frac{BR(\phi \to KK)}{BR(K^{*0} \to K\pi)} \frac{f_s}{f_d} \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B_d \to K^*\gamma}} \\ & \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B_d \to K^*\gamma}} & = & r_{acc} \times r_{reco\&sel} \times r_{PID} \times r_{trigger} \end{array}$$

$B \to V(\gamma, II)$

 $B \rightarrow V\gamma$: current LHCb analyses (1/2)

$$\frac{BR(B_d \to K^*\gamma)}{BR(B_s \to \phi\gamma)} = \frac{N_{B_d \to K^*\gamma}}{N_{B_s \to \phi\gamma}} \frac{BR(\phi \to KK)}{BR(K^{*0} \to K\pi)} \frac{f_s}{f_d} \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B_d \to K^*\gamma}} \\ \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B_d \to K^*\gamma}} = r_{acc} \times r_{reco\&sel} \times r_{PID} \times r_{trigger}$$

• Dedicated L0 and HLT lines exploiting the common decay topology of a hard photon and two tracks.

Calorimeter calibration: $\sigma_{data} = \sigma_{MC}!$

$B \rightarrow V(\gamma, II)$

 $B \rightarrow V\gamma$: current LHCb analyses (1/2)

$$\frac{BR(B_d \to K^*\gamma)}{BR(B_s \to \phi\gamma)} = \frac{N_{B_d \to K^*\gamma}}{N_{B_s \to \phi\gamma}} \frac{BR(\phi \to KK)}{BR(K^{*0} \to K\pi)} \frac{f_s}{f_d} \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B_d \to K^*\gamma}} \\ \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B_d \to K^*\gamma}} = r_{acc} \times r_{reco\&sel} \times r_{PID} \times r_{trigger}$$

- Dedicated L0 and HLT lines exploiting the common decay topology of a hard photon and two tracks.
- Offline selections are the same except for the PID and vector meson invariant mass requirements

Calorimeter calibration: $\sigma_{data} = \sigma_{MC}!$

⇒ Acceptance, selection and trigger
 efficiency ratios taken from MC
 ⇒ PID efficiencies evaluated in data

 $B \rightarrow V(\gamma, II)$

$$B \rightarrow V\gamma$$
: current LHCb analyses (2/2)

$$A_{CP} = A_{CP}^{\text{RAW}} - A_{\text{D}}(K\pi) - \kappa A_{\text{P}}(B) = \frac{\int \bar{\Gamma}(t)dt - \int \Gamma(t)dt}{\int \bar{\Gamma}(t)dt + \int \Gamma(t)dt}$$

- Detection and production asymmetries taken from $B \rightarrow HH$ analyses
- Depends on the selection(s)

$$\kappa = \frac{\int \cos(\Delta m_d t) \exp(-\Gamma_d t) \epsilon(t) dt}{\int \cosh(\Delta \Gamma_d t/2) \exp(-\Gamma_d t) \epsilon(t) dt}$$

• A_{CP}^{RAW} of background: Estimate A_{CP} from possible sources, use toy MC to assign a systematic error

$B \rightarrow V\gamma$: LHCb results and outlook

Results from the analysis of $0.34 \, \text{fb}^{-1}$ of LHCb data (shown at LP11)

• Ratio of BR

 $\frac{BR(B_d \to K^* \gamma)}{BR(B_s \to \phi \gamma)} = 1.52 \pm 0.14 \, (\mathrm{stat}) \pm 0.10 \, (\mathrm{syst}) \pm 0.12 (\mathrm{f_s/f_d})$

SM prediction: 1.0 \pm 0.2, pre LHCb experimental resolution: \sim 0.3

• Assuming the central value of $BR(B_d \rightarrow K^*\gamma)$ from PDG BR $(B_s \rightarrow \phi\gamma) = (2.8 \pm 0.5) \times 10^{-5}$

which improves the uncertainty on $BR(B_s \rightarrow \phi \gamma)$ by a factor of 3

• Analyses well advanced, expect soon to have \Rightarrow a more precise measurement of the BR ratio and \Rightarrow a competitive measurement of $\mathcal{A}_{CP,dir}$ in $B_d \to K^*\gamma$

Introduction

② Rare decays and LHCb $B_s \rightarrow \mu^+ \mu^ B \rightarrow V(\gamma, II)$

Other searches and conclusions Other rare decay searches Conclusions and outlook

Other searches

Majorana neutrinos LHCb just published [arXiv:1110.0730]:

 $\begin{array}{ll} B^+ \to K^- \mu^+ \mu^+ \ < \ 5.4 \times 10^{-8} \\ B^+ \to \pi^- \mu^+ \mu^+ \ < \ 5.8 \times 10^{-8} \end{array} \begin{array}{ll} \mbox{Decays forbidden in the SM} \\ \Rightarrow \ \mbox{allowed in models with Majorana neutrinos.} \end{array}$

which improves the previous limits by factor of 40 and 30, with only 0.036 fb^{-1} !

Other searches

Majorana neutrinos LHCb just published [arXiv:1110.0730]:

 $\begin{array}{ll} B^+ \to K^- \mu^+ \mu^+ < 5.4 \times 10^{-8} & \mbox{Decays forbidden in the SM} \\ B^+ \to \pi^- \mu^+ \mu^+ < 5.8 \times 10^{-8} & \Rightarrow \mbox{allowed in models with Majorana neutrinos.} \\ \mbox{which improves the previous limits by factor of 40 and 30, with only 0.036 fb}^{-1}! \end{array}$

Search for $B^+
ightarrow \pi^+ \mu \mu$

Current limit is $3 \times SM$ prediction. LHCb (1 fb⁻¹): good chance of discovery or a very stringent limit Has has a factor $|V_{td}|/|V_{ts}|$ wrt $B^+ \rightarrow K^+ \mu \mu$ in the SM, \Rightarrow may not hold in presence of NP

Other rare decay searches

Other searches

Majorana neutrinos LHCb just published [arXiv:1110.0730]:

 $\begin{array}{ll} B^+ \to K^- \mu^+ \mu^+ < 5.4 \times 10^{-8} & \mbox{Decays forbidden in the SM} \\ B^+ \to \pi^- \mu^+ \mu^+ < 5.8 \times 10^{-8} & \Rightarrow \mbox{allowed in models with Majorana neutrinos.} \\ \mbox{which improves the previous limits by factor of 40 and 30, with only 0.036 fb}^{-1}! \end{array}$

Search for $B^+ o \pi^+ \mu \mu$

Current limit is $3 \times SM$ prediction. LHCb (1 fb⁻¹): good chance of discovery or a very stringent limit Has has a factor $|V_{td}|/|V_{ts}|$ wrt $B^+ \rightarrow K^+ \mu \mu$ in the SM, \Rightarrow may not hold in presence of NP

And many more analyses in advance stage					
Channel	SM	NP	Current		
$K_s \rightarrow \mu \mu$	10^{-11}	$10^{-8to-10}$	10 ⁻⁷		
$ au o \mu \mu \mu$	$< 10^{-50}$	$10^{-8to-10}$	10 ⁻⁸		
$B o \mu \mu \mu \mu$	10^{-11}	?	None		

Expect competitive or better limits than current results with 1 fb^{-1}

Fatima Soomro (LNF - INFN)

	Rare decays and LHC <i>b</i> 0000000 000000000000	Other searches and conclusions \circ
Conclusions and outlook		

Conclusions

The search for the yet undiscovered, and precise measurement of various observables in the already known rare decays are excellent ways to probe NP \Rightarrow complimentary, and in some cases stronger than direct searches

Conclusions and outlook

Conclusions

The search for the yet undiscovered, and precise measurement of various observables in the already known rare decays are excellent ways to probe NP

 \Rightarrow complimentary, and in some cases stronger than direct searches

• LHC*b* has a diverse program of rare decay searches, currently has world's best limits on $B_s \rightarrow \mu^+ \mu^-$, $B_d \rightarrow \mu^+ \mu^-$

 \Rightarrow limits on constrained SUSY models more stringent than direct searches

- LHCb is producing many angular and isospin analyses of B → VII decays,
 ⇒ The measurements of A_{FB}, dBR/dq² and F_L in B_d → K^{*0} μμ are currently the most precise. Seem to follow the SM!
 ⇒ Update analyses with 1 fb⁻¹, measure other observables as well
- LHCb has already produced the most precise measurement of $BRB_s \rightarrow \phi \gamma$ with $\sim 0.34 \, \text{pb}^{-1}!$

⇒ Other radiative $(B \rightarrow V\gamma)$ analyses like the direct *CP* asymmetry in $B_d \rightarrow K^*\gamma$ will be ready soon

Conclusions and outlook

Conclusions

The search for the yet undiscovered, and precise measurement of various observables in the already known rare decays are excellent ways to probe NP

 \Rightarrow complimentary, and in some cases stronger than direct searches

• LHC*b* has a diverse program of rare decay searches, currently has world's best limits on $B_s \rightarrow \mu^+ \mu^-$, $B_d \rightarrow \mu^+ \mu^-$

 \Rightarrow limits on constrained SUSY models more stringent than direct searches

- LHCb is producing many angular and isospin analyses of B → VII decays,
 ⇒ The measurements of A_{FB}, dBR/dq² and F_L in B_d → K^{*0} μμ are currently the most precise. Seem to follow the SM!
 ⇒ Update analyses with 1 fb⁻¹, measure other observables as well
- LHCb has already produced the most precise measurement of ${\rm BR}B_s\to\phi\gamma$ with $\sim0.34\,{\rm pb}^{-1}!$

⇒ Other radiative $(B \to V\gamma)$ analyses like the direct *CP* asymmetry in $B_d \to K^*\gamma$ will be ready soon Watch out for rare decays space!

Spares

$B \rightarrow \mu^+ \mu^-$ physics motivation

In the SM, predicted to be very small BR($B_s \rightarrow \mu^+\mu^-$) = $3.2 \pm 0.2 \times 10^{-9}$, BR($B_d \rightarrow \mu^+\mu^-$) = $1.0 \pm 0.1 \times 10^{-10}$

Can be enhanced due to scalar and pseudo scalar NP contributions, which are negligible in SM

Fatima Soomro (LNF - INFN)

$B_s \rightarrow \mu^+ \mu^-$ (from paper 1/3)

Figure 2: Invariant mass distributions of $B_{(s)}^0 \to h^+h^{\prime-}$ candidates in the $\mu^+\mu^-$ mass hypothesis for the whole sample (top left) and for the samples in the three highest bins of the BDT output (top right, bottom left, bottom right). The $B_{(s)}^0 \to h^+h^{\prime-}$ exclusive decays, the combinatorial background and the physical background components are drawn under the fit to the data (solid blue line).

Fatima Soomro (LNF - INFN)

$B_s \rightarrow \mu^+ \mu^-$ (from paper 2/3)

Figure 1: Distribution of the $\mu^+\mu^-$ invariant mass for events in each BDT output bin. The curve shows the model used to fit the sidebands and extract the expected number of combinatorial background events in the B_s^0 and B^0 signal regions, delimited by the vertical dotted orange and dashed green lines respectively. Only events in the region in which the line is solid have been considered in the fit.

Fatima Soomro (LNF - INFN)

Epiphany 2012, Krakow

$B_s \rightarrow \mu^+ \mu^-$ (from paper 3/3)

Figure 8: Distribution of selected di-muon events in the $B^0 \to \mu^+ \mu^-$ mass window for the four BDT output bins. The black dots are data, the light grey histogram shows the contribution of the combinatorial background, the black filled histogram shows the contribution of the $B^0_{(s)} \to h^+ h^-$ background and the dark grey filled histogram shows the cross-feed of $B^0_s \to \mu^+ \mu^-$ events in the B^0 mass window assuming the the SM rate. The hatched area depicts the uncertainty on the sum of the expected contributions.

Epiphany 2012, Krakow

$B_s ightarrow \mu^+ \mu^-$ (from J.Matias 1/3)

Exclusive $B \to K^* (\to K\pi) l^+ l^-$ New Physics Extracting Maximal/Clean Information from Angular Distributions Isospin Asymmetry Primary Clean Observables: Basis of Observables Why $A_7^{\perp}=P_1$ is better than $A_{FB_1}^{\perp}$, Sensitivities of $P_{1,2,3,4,5,6}$, A_2^{\perp} , and massive $M_{1,2}$. Massive observables: $B \rightarrow K' (\rightarrow K\pi) \tau^+ \tau^-$

- $P_i = 1..6$ form a basis for all clean observables.
- Two dirty $+ P_{i=1..6}$ can generate any observable.
- If $J_{6c} \sim 0$ (no scalars) $P_{1,2,3,4,6}$ and P_5 fit $C_{7,7',9,10,9',10'}$.

Examples (clean ones in the clean basis):

$$A_T^{(2)} = P_1 \qquad A_T^{(re)} = 2P_2$$

$$A_T^{(im)} = 2P_3 \qquad A_T^5 = \sqrt{\frac{1 - P_1^2 - 4P_2^2 - 4P_3^2}{4}}$$

$$A_T^3 = f_1(P_i) \qquad A_T^4 = f_2(P_i)$$

Examples of dirty ones $(m_{\ell} = 0)$:

$$A_{im} = -\frac{2A_{FB}}{3P_2}P_3$$
 $F_L = 1 - \frac{2A_{FB}}{3P_2}$

Joaquim Matias Universitat Autònoma de Barcelona

Discussion on the exclusive $B \to K^* (\to K\pi) I^+ I^-$:

$B_s \rightarrow \mu^+ \mu^-$ (from J.Matias 2/3)

Exclusive $B \rightarrow K^* (\rightarrow K\pi) / f^{-}$ New Physics Extracting Maximal/Clean Information from Angular Distributions Isospin Asymmetry Primary Clean Observables: Basis of Observables **Why** $A_7^2 = P_1$ is better than A_{EB}^{-2} . Sensitivities of $P_{1,2,3,4,5,6}$, $A_7^{-2,5,5}$ and massive $M_{1,2}$. Massive observables: $B \to K^{st} (\to K\pi) \tau^+ \tau^-$

Why $A_T^2 = P_1$ is better than A_{FB} ? Why $A_{FB}|_{SM} \Rightarrow A_T^2|_{SM}$?

Definition

Kruger, J.M. '05

36 / 38

$$A_T^2 = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2} = -2\frac{\operatorname{Re}H_+^*H_-}{|H_+|^2 + |H_-|^2}$$

• Physics: Deviation from SM LH structure: $A_T^2 \Big|_{SM} \sim 0$ (from $A_{\perp} = -A_{\parallel}$).

- Absence of impact of RH currents in A_{FB} does not prevent a large A²_T.
- Domain: Low-Region $1 \le q^2 \le 6 \text{ GeV}^2$ (High region, see G. Hiller et al.)

$B_s \rightarrow \mu^+ \mu^-$ (from J.Matias 3/3)

Exclusive $B \rightarrow K^* (\rightarrow K\pi) I^+ I^-$ New Physics Extracting Maximal/Clean Information from Angular Distributions Isospin Asymmetry Primary Clean Observables: Basis of Observables Why $A_7^2 = P_1$ is better than A_{FB}^{2} . Sensitivities of $P_{1,2,3,4,5,6}$, $A_7^{2,*,5}$ and massive $M_{1,2}$ Massive observables: $B \to K^{a} (\to K \pi) \tau^+ \tau^-$

37 / 38

Other sensitivities of A_7^2 : CPV in $O_7 - O_7'$ and O_{10}'

A²_T: CP violating phase (O[']_T) sensitivity BETTER than CP violating observables
 A_{FB}: Mild sensitivity to C[']_T mod+phase
 A²_T: Strong sensitivity to C[']_T mod+phase

$$\begin{split} \mathrm{Num}(A_{FB}) &\sim \frac{2m_b M_B}{q^2} C_7^{eff} + C_9 + \frac{2m_b M_B}{q^2} |C_7^{NP}| \cos \phi_7^{NP} \\ \mathrm{Num}(A_T^2) &= \frac{4m_b M_B}{q^2} \left[\left(\frac{2m_b M_B}{q^2} C_7^{eff} + C_9 \right) |C_7'| \cos \phi_7' + \frac{2m_b M_B}{q^2} |C_7'| |C_7^{NP}| \cos(\phi_7' - \phi_7^{NP}) \right] \end{split}$$

• If only O'_{10} turned on A^2_T has a different and characteristic q^2 -dependence for O'_{10} than for O_7 : no zero and maximal deviation around the AFB zero.

$B_d \rightarrow K * \mu \mu$ systematics (from paper)

- For the determination of AFB and FL, the dominant systematic uncertainties arise from
 ⇒ the event-by-event weights which are extracted from simulated events (The uncertainty
 on the event-byevent weights is evaluated by fluctuating these weights within their
 statistical uncertainties and repeating the fitting procedure.) and
 ⇒ from the model used to describe the angular distribution of the background. (The
 uncertainty from the background model which is used is estimated by changing this model
 to one which uses binned templates from the upper mass sideband rather than a
 polynomial parameterisation.)
- The dominant systematic errors for the determination of dB=dq2 arise from
 ⇒ the uncertainties on the particle identification and track reconstruction efficiencies.
 These efficiencies are extracted from control channels and are limited by the relevant
 sample sizes. The systematic uncertainty is estimated by fluctuating the efficiencies within
 the relevant uncertainties and repeating the fitting procedure.
 - \Rightarrow An additional systematic uncertainty of 4% arises from the uncertainty in the B0 to Jpsi Kst and Jpsi to mumu BRs

