Semileptonic B Decays and Implications for Higgs Searches

Roberto Sacco

for the BaBar Collaboration

Epiphany Conference on present and future of B-physics Cracow, 9–11 Jan 2012

Outline

Semileptonic decays in the B, $B_{\mbox{\scriptsize s}}$ sector, measurement techniques

The $|V_{ub}|$, $|V_{cb}|$ puzzle

 B_s production rate and semileptonic branching fraction

 $B \rightarrow D^{(*)} \tau v$ and the two-doublet Higgs model

2 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

Semileptonic B Decays

Semileptonic B decays give us a clear view of the b quark inside the B meson

Decay rate depends on $|V_{ub}|$ and $|V_{cb}|$ Leptonic and hadronic currents can be disentangled Tree-level decays independent of new physics

Inclusive decays

Large signal rate, high backgrounds Total rate calculated with HQE Need to account for non perturbative QCD effects!

decay process

3 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

Semileptonic B Decays

Semileptonic B decays give us a clear view of the b quark inside the B meson

 m_{τ} , $|V_{cb}|$

but τ final states may be sensitive to charged Higgs exchange

Inclusive decays

Large signal rate, high backgrounds Total rate calculated with HQE Need to account for non perturbative QCD effects!

decay process

Measurement Techniques - Tagging

The Vubl, Vcbl puzzle

Using various measurement techniques, we are confronted with a puzzle: $|V_{ub}|$ and $|V_{cb}|$ values from inclusive and exclusive measurements are marginally consistent with each other

	PRD 81, 032003 (2010)	
2.2 σ	$(42.1 \pm 0.6 \pm 0.8) \times 10^{-3}$	Inclusive
discrepanc	$(37.4 \pm 1.2 \pm 1.4) \times 10^{-3}$	Combined exclusive
	PRD 74, 092004 (2006) PRD 77, 032002 (2008)	
_	arXiv: 1112.0702 [hep-ex]	
2.8 σ	$(4.31 \pm 0.25 \pm 0.16) \times 10^{-3}$	Inclusive
discrepanc	$(3.13 \pm 0.14 \pm 0.27) \times 10^{-3}$	Combined exclusive
	PRD 83, 032007 (2011) PRD 83, 052011 (2011)	

We measure number of events, Φ yield, and Φ yield in correlation with a high-momentum lepton as a function of CM energy

Hadronic event rate

$$R_B[f_s\epsilon_h^s + (1 - f_s)\epsilon_h]$$

Inclusive Φ rate

$$R_B[f_s\epsilon^s_{\phi}P(B_s\overline{B}_s \to \phi X) + (1 - f_s)\epsilon_{\phi}P(B\overline{B} \to \phi X)]$$

Inclusive Φ +lepton rate

$$R_B[f_s \epsilon^s_{\phi \ell} P(B_s \overline{B}_s \to \phi \ell X) + (1 - f_s) \epsilon_{\phi \ell} P(B \overline{B} \to \phi \ell X)]$$

$$R_{B} = \sum_{q=u,d,s} \sigma(e^{+}e^{-} \to B_{q}\bar{B}_{q})/\sigma_{\mu^{+}\mu^{-}} \qquad f_{s} \equiv \frac{N_{B_{s}}}{N_{B_{u}} + N_{B_{d}} + N_{B_{s}}}$$

ε_i are efficiencies estimated from MC P(BB→Φ(l)X) are probabilities that a Φ(l) is produced in a BB event

For each bin in CM energy, Φ candidates are reconstructed in the $\Phi \rightarrow K^{+}K^{-} \text{ decay mode}$

Fit PDF is a Voigt profile for the signal and the product of a linear term and a threshold cutoff function for the combinatorial background

Continuum e⁺e⁻→qq̄ background is subtracted, bin by bin, using data below Y(4S) threshold

10 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

Now we have a measured rate that can be related to the equations showed earlier, noting that unknown quantities can be estimated

 $B_{u/d}$ contributions are measured in data taken at Y(4S)

 f_s is extracted at each energy point from number of events and Φ yield

B_s contributions depend on known quantities, such as: BF(B_s→ D_sX), BF(B_s→lvX), BF(D_s→lvX), BF(D_s→ΦX), B(D_s→ΦlvXn)

Finally, a χ^2 is constructed from measured and expected values of $P(B_s\overline{B}_s \rightarrow \Phi | X)$, and minimized with respect to $BF(B_s \rightarrow | vX)$

$B \rightarrow D^{(\star)} \tau \nu$

Semileptonic B decays to τ are not as \longrightarrow DTV well known as to e and μ

DTV measured with 3.8 σ, D*τν with 8.1 σ

Their branching fractions can be affected by new physics – the two-doublet model of Higgs sector introduces tree-level interactions with a charged Higgs

if $m_b \tan\beta >> m_c$ and $m_H^2 >> q^2$, the

rate depends only on:

 $\frac{d\Gamma}{da^2} = \frac{d\Gamma_{SM}}{da^2} (1 - m_B^2 \tan^2\beta/m_H^2)^2$

 $=\frac{d\,\Gamma_{SM}}{d\,q^2}(1-g_s)^2$

 $g_S = m_B^2 \tan^2 \beta / m_H^2$

A quantity where many theoretical and experimental systematic uncertainties cancel is

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

Standard Model predictions:

B tagging with full reconstruction of one side in hadronic modes: $B \rightarrow D^{(*)}Y$, $Y = n\pi + m\pi^0 + pK_s + qK$ reco **Y(4S)** $m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$ Requirements on: $\Delta E = E_B^* - E_{\text{beam}}$ recoil Signal side: D^(*) candidate reconstructed in 11 modes, with $D \rightarrow KK$, $D \rightarrow Kn\pi$ (n=1,2,3) candidates have e or μ in final state: primary for normalization (1v), secondary for τ decays (3v) no additional particle detected

to discriminate against e, μ from normalization modes:

$$q^2 = (E_{\text{miss}} + E_{\ell})^2 - (\mathbf{p}_{\text{miss}} + \mathbf{p}_{\ell})^2$$

Signal region is q²>4 GeV²

 m^{2}_{miss} = invariant mass of missing E and **p**

peaks at 0 for normalization modes, >1 GeV² for signal

Boosted Decision Tree (BDT) used to suppress combinatorial, continuum e⁺e⁻→qq̄ and B→D**lv backgrounds

$$B \rightarrow D^{(*)} \tau v$$

4 main channels: D⁰, D⁺, D^{*0}, D^{*+}

Unbinned ML fit of m²_{miss} versus p*1 distributions

Simultaneous fit to signal and special D**-enriched samples

D**-enriched samples: B→D^(*)π⁰l∨, to determine feed-down

10 parameter fit to 4 signal channels + 12 parameter fit to D^(*)π⁰ control channels

Simulation used to fix the relative yields of continuum, B combinatorial and charge cross-feed background

14 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

•	•		
ISOS	DIN	CONST	rained

	D*0	D*+	D*
N _{sig}	511 ± 48	220 ± 23	730 ± 50
Significance	11.9	12.1	17.1
R(D*)	0.314 ± 0.030	0.356 ± 0.038	0.325 ± 0.023

Both charge modes reconstructed with high significance

15 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

$B \rightarrow D^{(\star)} \tau \nu$

Systematic uncertainties:

Currently, the variation of BDT cut dominates

Tight BDT cut: 50% of nominal sample Loose BDT cut: 200% of nominal sample

17 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

 $B \rightarrow D^{(\star)} \tau \nu$

Mode	$N_{ m sig}$	$N_{ m norm}$	$\varepsilon_{ m sig}/arepsilon_{ m norm}$	$\mathcal{R}(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{\rm tot}$ ($\Sigma_{\rm stat}$)
$D^0 au^- \overline{ u}_ au$	226 ± 39	1433 ± 46	2.13 ± 0.06	$0.422 \pm 0.074 \pm 0.059$	$0.96 \pm 0.17 \pm 0.14$	5.0(6.2)
$D^{*0} au^- \overline{ u}_ au$	511 ± 48	6839 ± 90	1.36 ± 0.02	$0.314 \pm 0.030 \pm 0.028$	$1.73 \pm 0.17 \pm 0.18$	8.9(11.9)
$D^+ au^- \overline{ u}_ au$	139 ± 21	704 ± 29	2.19 ± 0.08	$0.513 \pm 0.081 \pm 0.067$	$1.08 \pm 0.19 \pm 0.15$	6.0(7.5)
$D^{*+} au^- \overline{ u}_ au$	220 ± 23	2802 ± 56	1.25 ± 0.03	$0.356 \pm 0.038 \pm 0.032$	$1.82 \pm 0.19 \pm 0.17$	9.5(12.1)
$D\tau^-\overline{\nu}_{\tau}$	368 ± 42	2140 ± 54	2.15 ± 0.05	$0.456 \pm 0.053 \pm 0.056$	$1.04 \pm 0.12 \pm 0.14$	6.9(9.6)
$D^* au^- \overline{ u}_ au$	730 ± 50	9639 ± 107	1.33 ± 0.07	$0.325 \pm 0.023 \pm 0.027$	$1.79 \pm 0.13 \pm 0.17$	11.3 (17.1)

isospin constrained

Full consistency with earlier BaBar results

all channels observed at >5σ significance 1.8 σ deviation from SM

SM prediction obtained with old measurements of Form Factors

→ n

Recalculate it using the latest measurements (HFAG, PDG 2010)

 $\rho^2_D = 1.18 \pm 0.06, \ \rho^2_{D^*} = 1.20 \pm 0.05, \ R_1 = 1.43 \pm 0.06, \ R_2 = 0.82 \pm 0.04$ $m_0/m_b = 0.30 \pm 0.02$

$m_c/m_b = 0.30 \pm 0.02$		
	R(D) _{SM}	R(D*) _{SM}
Hwang, Kim (2000)	0.278 ± 0.042	0.256 ± 0.014
Chen, Geng (2006)	0.301 ± 0.017	0.252 ± 0.013
Nierste, Trine, Westhoff (2008)	0.31 ± 0.02	-
Tanaka, Watanabe (2010)	0.302 ± 0.015	-
Our prediction (after Tanaka, Chen)	0.310 ± 0.008	0.273 ± 0.002

19 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

$B \rightarrow D^{(\star)} \tau \nu$

We find the compatibility of our measurements with the charged Higgs model combining the results in a χ^2

R(D), R(D*) compatible with SM at ${\sim}2\sigma$

 g_s values incompatible between R(D) and R(D*)

20 – R. Sacco, Semileptonic B decays and Implications for Higgs Searches

$B \rightarrow D^{(\star)} \tau v$

Very similar results are obtained if we combine measurements from Belle and BaBar

Belle: $R(D) = 0.422 \pm 0.095$, $R(D^*) = 0.397 \pm 0.056$

 $B \rightarrow D^{(*)}$ τν

Check compatibility between R(D) and R(D^{*}), taking correlations into account: the possibility of both results agreeing with SM predictions is excluded at 3.4σ

The two-doublet model of Higgs sector is excluded at 96% level

Conclusions

BaBar continues to probe the SM with the wealth of data available

|V_{ub}| and |V_{cb}| values from inclusive and exclusive measurements are marginally consistent with each other

BaBar has measured the production rate and semileptonic branching fraction of $B_{\rm s}$ mesons

BaBar has updated its $B \rightarrow D^{(*)} \tau v$ measurement, with the first observation of $B \rightarrow D \tau v$ with a significance >5 σ

The results show a 2σ excess over SM, and are not compatible with two-doublet Higgs model