$\begin{array}{c} {\rm Outline} \\ {\rm Inclusive}\;\bar{B}\to X_s\gamma\\ {\rm Tree-level}\;s\gamma q\bar{q}\; {\rm final}\; {\rm state\; contributions}\\ {\rm NNLO\;BLM\; corrections}\\ {\rm Summary} \end{array}$

Precision Corrections to the Weak Radiative *B* Decay

Michał Poradziński

University of Warsaw

January 11, 2012

Outline

 $\begin{array}{l} \mbox{Inclusive \bar{B}} \to X_s \gamma \\ \mbox{Tree-level $s \gamma q \bar{q}$ final state contributions} \\ \mbox{NNLO BLM corrections} \\ \mbox{Summary} \end{array}$

Outline

- Inclusive $\bar{B} \to X_s \gamma$
- Tree-level $s\gamma q\bar{q}$ final state contributions
- NNLO BLM corrections
- Summary

 $\begin{array}{c} \text{Outline}\\ \text{Inclusive }\bar{B} \rightarrow X_s \gamma\\ \text{Tree-level } s\gamma q\bar{q} \text{ final state contributions}\\ \text{NNLO BLM corrections}\\ \text{Summary} \end{array}$

Inclusive $\bar{B} \to X_s \gamma$

In inclusive $\bar{B} \rightarrow X_s \gamma$, X_s stands for any hadronic state with strangeness equal to -1 and without charmed hadrons.

$$b \in \bar{B} \equiv (\bar{B}^0 or B^-)$$

Weak radiative decay of the B meson is induced at one loop level. Some new particles may be circulating in the loops.

Information about the electroweak interactions is encoded in low-energy effective theory couplings.

Outline Inclusive $\overline{B} \rightarrow X_s \gamma$ Tree-level $s \gamma q \overline{q}$ final state contributions NNLO BLM corrections Summary

The current experimental world average is

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{exp}^{E_0 > 1.6 GeV} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$$

The Standard Model prediction for the inclusive branching ratio reads

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{SM}^{E_0 > 1.6 GeV} = (3.15 \pm 0.23) \times 10^{-4}$$

- Agreement at the 1.2σ level.
- Both uncertainties are at the $\pm 7\%$ level.

Thus, there is not much room left for new effects.

 $\begin{array}{c} \mbox{Outline}\\ \mbox{Inclusive $\bar{B} \rightarrow X_s \gamma$}\\ \mbox{Tree-level $s \gamma q \bar{q}$ final state contributions}\\ \mbox{NNLO BLM corrections}\\ \mbox{Summary} \end{array}$

The current experimental world average is

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{exp}^{E_0 > 1.6 GeV} = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$$

The Standard Model prediction for the inclusive branching ratio reads

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{SM}^{E_0 > 1.6 GeV} = (3.15 \pm 0.23) \times 10^{-4}$$

- Agreement at the 1.2σ level.
- Both uncertainties are at the $\pm 7\%$ level.

Thus, there is not much room left for new effects. Therefore: $\overline{B} \rightarrow X_s \gamma$ is used to put constraints on New Physics rather than to find deviations from the SM.

 $\begin{array}{c} \text{Outline} \\ \text{Inclusive } \bar{B} \rightarrow X_s \gamma \\ \text{Tree-level } s\gamma q \bar{q} \text{ final state contributions} \\ \text{NNLO BLM corrections} \\ \text{Summary} \end{array}$

Calculations of the inclusive rate are based on the relation

$$\Gamma(\bar{B} \to X_s \gamma)_{E_\gamma > E_0} = \Gamma(b \to X_s^p \gamma)_{E_\gamma > E_0} + \begin{bmatrix} \text{non-perturbative} \\ \text{effects} \sim 5\% \end{bmatrix}$$

where

- $\Gamma(b \rightarrow X_s^p \gamma)$ is evaluated perturbatively,
- X_s^p stands for $s, sg, sgg, sq\bar{q}$, etc.

 $\begin{array}{c} \mbox{Outline}\\ \mbox{Inclusive $\bar{B} \to X_s γ}\\ \mbox{Tree-level $s $\gamma $q \bar{q} final state contributions}\\ \mbox{NNLO BLM corrections}\\ \mbox{Summary} \end{array}$

Information on the electroweak-scale physics in the $b \rightarrow s\gamma$ transition is encoded in effective low-energy interactions after integrating out W^{\pm} , Z and any other heavy particles:

Instead of explicit electroweak interactions, dimension-five and -six local flavour-changing operators arise

$$\begin{array}{rcl} Q_{1,2} & = & (\bar{s}\Gamma_i c)(\bar{c}\Gamma_i' b) \,, & Q_{3,4,5,6} & = & (\bar{s}\Gamma_i b)\sum_q (\bar{q}\Gamma_i' q) \,, \\ Q_7 & = & \frac{em_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu} \,, & Q_8 & = & \frac{gm_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} b_R G_{\mu\nu} \,. \end{array}$$

 $Q_7 - Q_7$ and $Q_7 - Q_{1,2}$ interferences give dominant contributions.

Tree-level $s\gamma q\bar{q}$ final state contributions

Presence of the collinear logarithms $\ln \frac{m_b^2}{m_q^2}$, where m_q is the light quark mass. Power corrections $\left(\frac{m_q^2}{m_b^2}\right)^n$ are neglected. $\begin{array}{c} \mbox{Outline}\\ \mbox{Inclusive $\bar{B} \to X_s \gamma$}\\ \mbox{Tree-level $s \gamma q \bar{q}$ final state contributions}\\ \mbox{NNLO BLM corrections}\\ \mbox{Summary} \end{array}$

Difficulties with the tree-level calculation:

collinear logarithms

• integration over the 4-particle partly massive phase space An example of a function present in the final result

$$\begin{split} T_1(\delta) &= \left(-\frac{5}{3}\delta - \frac{1}{3}\delta^2 + \frac{4}{9}\delta^3 - \frac{1}{2}\delta^4 - \frac{5}{3}\ln(1-\delta) \right) \ln \frac{\delta m_b^2}{m_q^2} \\ &+ \frac{109}{18}\delta + \frac{17}{18}\delta^2 - \frac{191}{108}\delta^3 + \frac{23}{16}\delta^4 + \frac{79}{18}\ln(1-\delta) - \frac{5}{3}\mathsf{Li}_2(\delta) \,, \end{split}$$

where $E_{min}^{\gamma} \equiv \frac{m_b}{2}(1-\delta)$.

 $\begin{array}{l} \mbox{Outline}\\ \mbox{Inclusive $\bar{B}\to X_s\gamma$}\\ \mbox{Tree-level $s\gamma q\bar{q}$ final state contributions}\\ \mbox{NNLO BLM corrections}\\ \mbox{Summary} \end{array}$

The Wilson coefficients $C_1 - C_8$ play the role of coupling constants at the effective interactions $Q_1 - Q_8$

$$\mathcal{L}_{\text{weak}} \sim \sum_{i} C_i(\mu) Q_i,$$

Their evaluation at $\mu = \mu_b \sim m_b/2$ up to $O(\alpha_s^2)$ was completed a few years ago The partonic decay rate is evaluated according to the formula

$$\Gamma(b \to X_s^p \gamma)_{E_{\gamma} > E_0} = N \sum_{i,j=1}^8 C_i(\mu_b) C_j(\mu_b) G_{ij}(E_0,\mu_b),$$

where $N = |V_{ts}^{\star}V_{tb}|^2 (G_F^2 m_b^5 \alpha_{\rm em})/(32\pi^4).$

 $\begin{array}{c} & \operatorname{Outline} \\ & \operatorname{Inclusive} \bar{B} \to X_s \gamma \\ \text{Tree-level } s\gamma q \bar{q} \text{ final state contributions} \\ & \operatorname{NNLO} \operatorname{BLM corrections} \\ & \operatorname{Summary} \end{array}$

$$G_{ij} = G_{ij}^{(0)} + \alpha_s G_{ij}^{(1)} + \alpha_s^2 G_{ij}^{(2)} + \dots$$

The LO contribution $G_{ij}^{(0)}$ and the NLO one $G_{ij}^{(1)}$ are known since a long time. At the NNLO, it is sufficient to restrict our attention to $i, j \in \{1, 2, 7, 8\}$ because the penguin operators have very small Wilson coefficients $(|C_{3,5,6}(\mu_b)| < |C_4(\mu_b)| \sim \alpha_s(\mu_b)/\pi)$. $\begin{array}{c} \mbox{Outline}\\ \mbox{Inclusive}\ \bar{B}\to X_s\gamma\\ \mbox{Tree-level}\ s\gamma q\bar{q}\ \mbox{final state contributions}\\ \mbox{NNLO BLM corrections}\\ \mbox{Summary} \end{array}$

If we treat the two similar operators Q_1 and Q_2 as a single one (represented by Q_2), there are six independent cases of the NNLO contributions to $G_{ij}^{(2)}$

- $Q_7: G_{77}^{(2)}, G_{78}^{(2)}, G_{27}^{(2)}$
- remaining: $G_{22}^{(2)}, G_{28}^{(2)}, G_{88}^{(2)}$.

Contributions involving Q_7 :

- * $G_{77}^{(2)}$ was found several years ago
- G⁽²⁾₇₈ was finalized recently, see arXiv:1005.5587 & arXiv:0805.3911

• $G_{27}^{(2)}$ is currently being calculated by M. Czakon, R. N. Lee, M. Misiak, A. V. Smirnov, V. A. Smirnov and M. Steinhauser For the remaining cases $(G_{22}^{(2)}, G_{28}^{(2)}$ and $G_{88}^{(2)})$, contributions from the two-body final states are known, while the $(n \geq 3)$ -body final states give small effects. Outline Inclusive $\bar{B} \rightarrow X_s \gamma$ Tree-level $s\gamma q\bar{q}$ final state contributions NNLO BLM corrections Summary

NNLO BLM corrections

In the Brodsky-Lepage-Mackenzie (BLM) approximation, we split $G_{ij}^{(2)}$ into the β_0 -parts $G_{ij}^{(2)\beta_0}$ and the remaining parts $G_{ij}^{(2)rem}$

$$G_{ij}^{(2)} = A_{ij} n_l + B_{ij} = G_{ij}^{(2)\beta_0} + G_{ij}^{(2)\text{rem}}$$

where n_l stands for the number of massless flavours in the effective theory and

$$G_{ij}^{(2)\beta_0} \equiv -\frac{3}{2}\beta_0 A_{ij} = -\frac{3}{2}\left(11 - \frac{2}{3}(n_l + 2)\right)A_{ij},$$

$$G_{ij}^{(2)\text{rem}} \equiv \frac{33}{2}A_{ij} + B_{ij}.$$

 $\begin{array}{c} & {\rm Outline} \\ {\rm Inclusive} \ \bar{B} \rightarrow X_s \gamma \\ {\rm Tree-level} \ s \gamma q \bar{q} \ {\rm final} \ {\rm state} \ {\rm contributions} \\ {\rm NNLO \ BLM \ corrections} \\ {\rm Summary} \end{array}$

The BLM parts are calculated first because:

- calculation of the BLM corrections is usually simpler to perform than of the non-BLM ones
- experience shows that the BLM parts give dominant contributions to complete corrections. Hence, they can be used to estimate them.

 $\begin{array}{l} & \text{Outline} \\ & \text{Inclusive } \bar{B} \to X_s \gamma \\ \text{Tree-level } s\gamma q \bar{q} \text{ final state contributions} \\ & \text{NNLO BLM corrections} \\ & \text{Summary} \end{array}$

At the order $\mathcal{O}(\alpha_s^2)$, we found the BLM contributions $G_{28}^{(2)\beta_0}$, $G_{27}^{(2)\beta_0}$ and $G_{22}^{(2)\beta_0}$ [M. Misiak, M. Poradziński, Phys. Rev. D83 (2011) 014024].

The calculation of $G_{28}^{(2)\beta_0}$ has been performed for the first time, while the other cases are confirmations of the already known results.

 $\begin{array}{l} \mbox{Outline}\\ \mbox{Inclusive}\ \bar{B}\to X_s\gamma\\ \mbox{Tree-level}\ s\gamma q\bar{q}\ \mbox{final state contributions}\\ \mbox{NNLO BLM corrections}\\ \mbox{Summary}\end{array}$

We followed the method introduced by Smith and Voloshin in 1994. The two-loop calculation is reduced to a one-loop calculation but with an off-shell gluon. Integration over the gluon q^2 is performed afterwards according to

$$\Gamma_{\beta_0}^{\alpha_s^2} = -\frac{\alpha_s}{4\pi}\beta_0 \left[\int_0^\delta \frac{\Gamma^{\alpha_s}(v^2) - \Gamma^{\alpha_s}(0)}{v^2} dv^2 + \Gamma^{\alpha_s}(0) \left(\ln \frac{\delta m_b^2}{\mu^2} - \frac{5}{3} \right) \right]$$

where $v^2 = q^2/m_b^2$, q^{μ} is the gluon four-momentum, μ is the renormalization scale and $\delta = 1 - \frac{2E_0}{m_b}$ parametrizes the photon energy cut.

Outline

Inclusive $\bar{B} \rightarrow X_s \gamma$ Tree-level $s\gamma q\bar{q}$ final state contributions NNLO BLM corrections

Summary

The result for $G_{88}^{(2)\beta_0}$ reads:

$$G_{88}^{(2)\beta_0} = 4\beta_0 \left[\phi_{88}^{(1)}(\delta) \ln \frac{\mu_b^2}{m_b^2} + h_{88}^{(2)}(\delta) \right],$$

$$\begin{split} h_{88}^{(2)}(\delta) &= \frac{4}{27} \left\{ \left[\left(1 + \frac{1}{2}\delta \right)\delta\ln\delta - 6\ln(1-\delta) - 2\text{Li}_2(1-\delta) \right. \right. \\ &+ \frac{1}{3}\pi^2 - \frac{16}{3}\delta - \frac{5}{3}\delta^2 + \frac{1}{9}\delta^3 \right] \ln\frac{m_b}{m_s} - 2\text{Li}_3(\delta) \\ &+ \left(5 - 2\ln\delta \right) \left[\text{Li}_2(1-\delta) - \frac{1}{6}\pi^2 \right] - \frac{1}{12}\pi^2\delta \left(2 + \delta \right) \\ &+ \left[\frac{1}{2}\delta + \frac{1}{4}\delta^2 - \ln(1-\delta) \right] \ln^2\delta + \left(\frac{151}{18} - \frac{1}{3}\pi^2 \right) \times \\ &\times \ln(1-\delta) + \left(-\frac{53}{12} - \frac{19}{12}\delta + \frac{2}{9}\delta^2 \right)\delta\ln\delta \\ &+ \left. \frac{787}{72}\delta + \frac{227}{72}\delta^2 - \frac{41}{72}\delta^3 \right\}. \end{split}$$

Outline Inclusive $\overline{B} \rightarrow X_s \gamma$ Tree-level $s\gamma q \overline{q}$ final state contributions NNLO BLM corrections Summary

- Radiative $B \rightarrow X_s \gamma$ decay provides constraints on the SM extensions
- NLO i NNLO calculations are almost complete
- There is an urge to reduce theory uncertainty to meet the experimental accuracy