

The measurement of f_s/f_d from hadronic modes in LHCb experiment

Piotr Morawski

The Henryk Niewodniczanski Institute of Nuclear Physics PAS On behalf of the LHCb Collaboration

- 1. Introduction
- 2. Analysis strategy
 - Selection procedure
 - Signal model
 - Background model
- 3. Fitting results
- 4. Systematic uncertainty
- 5. Results

 f_q – fragmentation functions, describe the probability that a *b* quark will hadronize into a B_q meson (where q = u, d, s) or Λ_b baryon, respectively.

Signal

- $B_d \rightarrow D\pi$ (tree + exchange topology)
- $B_d \rightarrow DK$ (tree topology)
- $B_s \rightarrow D_s \pi$ (tree topology)
- Data:
 - \sim ~35 pb⁻¹ of data collected in 2010
- Goal:
 - Measure f_s/f_d (important for many BR measurements, e.g. $B_s \rightarrow \mu\mu$) at 7 TeV
 - First step towards the measurement of the CP violation in the signal modes.

Introduction 2

$B_d \rightarrow DK/B_s \rightarrow D_s \pi$

- Same final state ($KK\pi\pi$)
- Small theoretical uncertainty 7%

$$\frac{f_s}{f_d} = 0.0743 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{1}{\mathcal{N}_a \mathcal{N}_F} \frac{\epsilon_{DK}}{\epsilon_{D_s \pi}} \frac{N_{D_s \pi}}{N_{DK}}\right]$$

• arXiv:1004.3982v3

Deviation from factorization:

$$\mathcal{N}_a \equiv \left| \frac{a_1(D_s \pi)}{a_1(DK)} \right|^2 = 1.00 \pm 0.02$$

Form factor:

 $B_d \rightarrow D \pi/B_s \rightarrow D_s \pi$

- Similar final states
- Theoretical uncertainty of order of 9%

$$\frac{f_s}{f_d} = 0.982 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{1}{\tilde{\mathcal{N}}_a \mathcal{N}_F \mathcal{N}_E} \frac{\epsilon_{D\pi}}{\epsilon_{D_s \pi}} \frac{N_{D_s \pi}}{N_{D\pi}}\right]$$

 Additional contribution from the exchange diagrams

 $\mathcal{N}_E = 0.966 \pm 0.056$

Cracow Epiphany 11 January 2012

0.8

0.6

LHCb Preliminary

√s = 7TeV L...-2 pb⁻¹

Triggers and preselection the same for every signal mode – difference in the efficiencies arises due to Bs and Bd lifetime difference

Selection procedure

Analysis strategy:

Offline selection

40

- Optimized for *DK* signal significance
- Trained with 2 pb⁻¹ of data, with Signal taken from the MC sample and background events from the B mass sidebands

4		1111
Plotr	Morawski	

Decay

 $B_d \rightarrow D\pi$

B_d→DK

Double Crystal Ball function used for signal peak description

- Optimized using MC sample
- Left tail to account the radiative contribution
- Right tail to account non-Gaussian effects of the detector resolution

Parameter	$B^0 \to D^{\pm} \pi^{\mp}$	$B^0 \rightarrow D^{\pm} K^{\mp}$	$B^0_s \rightarrow D^\pm_s \pi^\mp$	$B^0_s ightarrow D^\pm_s K^\mp$
Mean	5280.47 ± 0.06	5280.75 ± 0.06	5367.61 ± 0.04	5367.58 ± 0.05
α_1	1.79 ± 0.02	1.82 ± 0.03	1.56 ± 0.01	1.70 ± 0.01
α_2	-2.08 ± 0.04	-2.04 ± 0.04	-1.74 ± 0.07	-1.94 ± 0.18
n_1	1.06 ± 0.02	1.09 ± 0.02	1.24 ± 0.01	1.19 ± 0.01
n_2	1.26 ± 0.08	1.48 ± 0.08	3.04 ± 0.37	2.43 ± 0.55
σ_1	14.22 ± 0.15	13.29 ± 0.16	12.99 ± 0.05	12.28 ± 0.10
σ_2	26.46 ± 0.90	22.91 ± 0.80	18.95 ± 0.39	18.34 ± 0.25
Fract.	0.79 ± 0.02	0.73 ± 0.02	0.59 ± 0.02	0.55 ± 0.01

Analysis strategy: Background description

- Combinatoric background (prompt charm + pure combinatoric)
 - Single component describes with exponent/linear function (depends on the fitter)
- Partially reconstructed background e.g.: $B_d \rightarrow D^*\pi$ with missing π^0
 - Modelled with RooKeysPdf using MC samples

- Background from misidentification e.g. $B_d \rightarrow D\pi$ with $B_d \rightarrow DK$ mass hypothesis
 - Extracted from data using the reweighting procedure (see next slide)

e.g.: Extracting $B_d \rightarrow D\pi$ mass shape with $B_d \rightarrow DK$ mass hypothesis:

- 1. Select ,pure' $Bd \rightarrow D\pi$ sample under correct mass hypothesis
- 2. Correct momentum distribution for the distortion caused by this cut
- 3. Reweight according to the particle identification cut used for kaon bachelor selection
- 4. Fix the kaon mass hypothesis with a RooKeysPdf Same procedure for all the mis-id backgrounds (e.g. $B_s \rightarrow D_s \pi$)

4103 ± 75

Parameter	Fitted value	Error
$N_{B^0 \to D^{\pm} \pi^{\mp}}$	4103	75
frac	0.58	0.06
mean	5276.3	0.4
σ_1	15.1	1.0
σ_2	27.1	1.2
N_{Comb}	1037	148
a_1	-7.210^{-3}	0.510^{-3}
$N_{D\rho}$	1631	198
$N_{D^*\pi}$	535	137

Signal Combinatorial Partially Reconstructed

Using bachelor PID cut to rule out the B_d→DK events
 All parameters free except the CB tails

B_d→D K :

 252 ± 21

Expect B _d →D π (r	ed number o nisID π →K): ↑	of : 142
Parameter	Fitted value	Error
$N_{B^0 \to D^{\pm} K^{\mp}}$	252	21
frac	0.38	0.17
mean	5277.5	1.8
N_{Comb}	58	14
$N_{D\pi}$	131	19
$N_{D\rho}$	125	24
N_{D^*K}	123	19

Signal Combinatorial Partially Reconstructed

Linear combintoric background
 Signal widths and CB tails are fixed

Source	For $D_s^{\pm} \pi^{\mp}$ and $D^{\pm} K^{\mp}$	For $D_s^{\pm} \pi^{\mp}$ and $D^{\pm} \pi^{\mp}$
PID calibration	1.0%	2.5%
B^0 fit model	2%	2%
B_s^0 fit model	2%	2%
L0 Trigger efficiency	2%	2%
$D_s^{\pm} \to K K \pi \text{ B.R}$	4.9%	4.9%
$D^{\pm} \to K \pi \pi \text{ B.R}$	2.2%	2.2%
$\frac{\tau_{B_s^0}}{\tau_{P^0}}$	1.5%	1.5%
Correction factors	2.2%	2.2%
Total	7.0%	7.4%

All systematic uncertainties strongly correlated
 B_s→D_sπ/B_d→DK more robust to PID systematics than B_s→D_sπ/B_d→Dπ

- Results of f_s/f_d with $B_s \rightarrow D_s \pi/B_d \rightarrow DK$ and $B_s \rightarrow D_s \pi/B_d \rightarrow D\pi$ $\frac{f_s}{f_d} = 0.250 \pm 0.024^{\text{stat}} \pm 0.017^{\text{syst}} \pm 0.017^{\text{theor}}$ $\frac{f_s}{f_d} = 0.256 \pm 0.014^{\text{stat}} \pm 0.019^{\text{syst}} \pm 0.026^{\text{theor}}$
 - Combination of results:

$$\frac{f_s}{f_d} = 0.253 \pm 0.017^{\text{stat}} \pm 0.017^{\text{syst}} \pm 0.020^{\text{theor}}$$

- In agreement with leptonic measurements of the f_s/f_d ratio in LHCb
- In agreement with latest results from CDF and LEP
- Result published in Phys. Rev. Lett. 107 (2011) 211801
- Now aiming towards the CP measurements using those modes

Thank you

Backup slides

Trigger & Stripping

Parameter	Value	
Global event cut		
Number of long tracks in the event	≤ 180	
D selections		
χ^2/ndf for daughter tracks	< 5	
p_T for daughter tracks	$> 250 \ {\rm MeV}/c$	
p for daughter tracks	$> 2000 \ { m MeV}/c$	
χ^2 of daughter IP to PV	> 4	
χ^2 of IP to PV for at least one daughter	> 40,	
Inv. mass window for D daughter combination	$\pm 110 \text{ MeV}/c^2$	
Inv. mass window for D after vertex fit	$\pm 100 \text{ MeV}$	
D vertex fit χ^2/ndf	< 12	
p_T for D	1500 MeV	
D DIRA	> 0.9	
DOCA between D daughter tracks	$< 1.5~\mathrm{mm}$	
B selections		
Bachelor p_T	$> 500 \ {\rm MeV}/c$	
Bachelor p	$> 5000 \ {\rm MeV}/c$	
χ^2 of bachelor IP to PV	> 16	
B vertex fit χ^2/ndf	< 12	
chi^2 of B IP to PV	< 25	
B proper time	> 0.2 ps	
B DIRA	> 0.9998	
Inv. mass window for B daughter combination	$\pm 500 \text{ MeV}/c^2$	

Stripping cuts list

Cracow Epiphany 11 January 2012

All particle momenta All particle IP χ^2	$> 2000 \mathrm{MeV}$ > 9
D^{\pm} daughter \mathbf{p}_t D^{\pm} \mathbf{p}_t	$> 300 { m MeV}$ $> 2000 { m MeV}$
D^{\pm} IP χ^2 D^{\pm} vertex χ^2 D^{\pm} FSPV (χ^2)	> 9 < 15 > 100
D^{\pm} mass	$(1870, 1969)^{+24}_{-40}$
Bachelor \mathbf{p}_t	$> 500 { m MeV}$
B^0 vertex χ^2 B^0 IP χ^2	< 10 < 16
$B^0 \text{ FSPV } (\chi^2)$ $B^0 \cos \theta$	> 144 > 0.9999

Variables for BDTG

$J/\psi K^*$ veto:

- No cut applied for D and B vertices separation thus small fraction of those can be reconstructed as Dπ
- Two final state tracks satisfy "isMuon" criterion
- Mass of those tracks is in ±40MeV J/ψ mass window

