Time-dependent CPV and mixing at B-factories

Kenkichi Miyabayashi
(Nara Women's University, Japan)
Epiphany conference, Cracow
2012 Jan. $9^{\text {th }}$

KM unitarity triangle and CPV parameter convention

$$
V=\left(\begin{array}{lll}
V_{\mathrm{ud}} & \mathrm{~V}_{\mathrm{us}} & \mathrm{~V}_{\mathrm{ub}} \\
\mathrm{~V}_{\mathrm{cd}} & \mathrm{~V}_{\mathrm{cs}} & \mathrm{~V}_{\mathrm{cb}} \\
\mathrm{~V}_{\mathrm{td}} & \mathrm{~V}_{\mathrm{ts}} & \mathrm{~V}_{\mathrm{tb}}
\end{array}\right)=\left(\begin{array}{llc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-\mathrm{i} \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

by Wolfenstein parametrization
Irreducible complex phase causes CP Violation (CPV)!

Comprehensive test; measure all the angles and sides.

B system : very good place, $)!\quad(\bar{\rho}, \bar{\eta})$ all the angles are $O(0.1)$!

$$
V_{\mathrm{td}} \mathrm{~V}_{\mathrm{tb}}{ }^{\pi}+\mathrm{V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cb}}{ }^{\pi}+\mathrm{V}_{\mathrm{ud}} \mathrm{~V}_{\mathrm{ub}}{ }^{\pi}=0
$$

Angle measurements and mixing

Decay via $b \rightarrow c$ (tree)
How about $b \rightarrow s$ (penguin)??
$b \rightarrow d$ (penguin) is also participating in some cases
\rightarrow direct CPV.

Time-dependent CPV

In order to see CPV by interference between decay and mixing.

$r(4 \mathrm{~S}) \rightarrow \mathrm{B}$ meson pair

$$
\begin{aligned}
& \Delta \mathrm{z}=\beta \gamma \mathrm{c} \Delta \mathrm{t}, \quad \rightarrow \underset{ }{\rightarrow} \text { Tag side } \\
& \beta \gamma=0.425 \text { (KEKB), } 0.56 \text { (PEP-II) } \quad \Delta \mathrm{z} \sim 200 \mu \mathrm{~m} \quad \text { (the other B) } \\
& \mathrm{A}_{\mathrm{CP}}(\Delta \mathrm{t})=\frac{\Gamma\left(\overline{\mathrm{B}^{0}}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)-\Gamma\left(\mathrm{B}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)}{\Gamma\left(\overline{\mathrm{B}^{0}}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)+\Gamma\left(\mathrm{B}^{0}(\Delta \mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)}=\mathrm{S}_{\mathrm{f}_{\mathrm{CP}}} \sin (\Delta \mathrm{~m} \Delta \mathrm{t})+\mathrm{A}_{\mathrm{f}_{\mathrm{CP}}} \cos (\Delta \mathrm{~m} \Delta \mathrm{t}) \\
& \mathrm{S}_{\mathrm{fCP}}=\frac{2 \operatorname{Im}(\lambda)}{|\lambda|^{2}+1} \quad \mathrm{~A}_{\mathrm{fCP}}=\frac{|\lambda|^{2}-1}{|\lambda|^{2}+1} \quad \lambda=\frac{q}{p} \frac{\bar{A}\left(\mathrm{f}_{\mathrm{CP}}\right)}{A\left(\mathrm{f}_{\mathrm{CP}}\right)} \\
& -\mathrm{C}_{\mathrm{fCP}}=\mathrm{A}_{\mathrm{fCP}} \quad|\lambda|=1 \text { if no DCPV }
\end{aligned}
$$

In order to perform such studies

B meson is so heavy that many decay modes are available. Branching fraction to the modes usable for CPV is limited.
\rightarrow Huge $\left(O\left(10^{8}\right)\right)$ amount of B mesons is necessary.
\rightarrow Measurement of time evolution of B meson pair is required.

Two B-factories at KEK and SLAC

$8 \mathrm{GeV}\left(\mathrm{e}^{-}\right) \mathrm{X} 3.5 \mathrm{GeV}\left(\mathrm{e}^{+}\right)$, $\mathrm{L}_{\text {max }}=2.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$$
\begin{aligned}
& 9 \mathrm{GeV}\left(\mathrm{e}^{-}\right) \mathrm{X} 3.1 \mathrm{GeV}\left(\mathrm{e}^{+}\right), \\
& \mathrm{L}_{\max }=1.2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Integrated luminosity of B factories

$>1 \mathrm{ab}^{-1}$
On resonance:
$Y(5 S): 121 \mathrm{fb}^{-1}$
$Y(4 \mathrm{~S}): 711 \mathrm{fb}^{-1} 772 \mathrm{M} \mathrm{BB}$
$Y(3 S): 3 \mathrm{fb}^{-1}$
$Y(2 S): 25 \mathrm{fb}^{-1}$
$Y(1 \mathrm{~S}): 6 \mathrm{fb}^{-1}$
Off reson./scan:
$\sim 100 \mathrm{fb}^{-1}$
$\sim 550 \mathrm{fb}^{-1}$
On resonance:
$Y(4 S): 433 \mathrm{fb}^{-1}$
$Y(3 S): 30 \mathrm{fb}^{-1}$
$Y(2 S): 14 \mathrm{fb}^{-1}$
Off resonance:
$\sim 54 \mathrm{fb}^{-1}$
1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

$\sin 2 \phi_{1}$ at Belle (772M BB, final sample)

Signal yield increased more than $N_{B \bar{B}}$ compared to the previous publication (PRL98,031802), thanks to the data reprocessing with improved tracking.

	$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$	$\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}$	$\psi(2 \mathrm{~S}) \mathrm{K}_{\mathrm{S}}$	$\chi_{\mathrm{c} 1} \mathrm{~K}_{\mathrm{S}}$	N_{BB}
$\mathrm{N}_{\text {sig }}$	12727 ± 115	10087 ± 154	1981 ± 46	943 ± 33	772 M
Purity(\%)	97	63	93	89	
$\mathrm{~N}_{\text {sig }}$ (prev.)	7484 ± 87	6512 ± 123	$\mathrm{~N} / \mathrm{A}$	N / A	535 M
Purity(\%) (prev.)	97	59			

$\sin 2 \phi_{1}$ at Belle $(772 \mathrm{M} \mathrm{BB})$

B decay mode	\mathcal{S}_{f}	\mathcal{A}_{f}
$J / \psi K_{S}^{0}$	0.671 ± 0.029	-0.014 ± 0.021
$\psi(2 S) K_{S}^{0}$	0.739 ± 0.079	0.103 ± 0.055
$\chi_{c 1} K_{S}^{0}$	0.636 ± 0.117	-0.023 ± 0.083
$J / \psi K_{L}^{0}$	-0.641 ± 0.047	0.019 ± 0.026

$\sin 2 \phi_{1}=0.668 \pm 0.023 \pm 0.013$
$\mathrm{A}_{\mathrm{fCP}}=0.007 \pm 0.016 \pm 0.013$

$\sin 2 \phi_{1}(=\sin 2 \beta)$ at BaBar (465M BB)

$\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{CM}} / 2$

$\sin 2 \phi_{1}=0.687 \pm 0.028 \pm 0.012$ $\mathrm{A}_{\text {fCP }}=-0.024 \pm 0.020 \pm 0.016$ PRD79,072009(2009)

Now it is a firm SM reference! $\sin (2 \beta) \equiv \sin \left(2 \phi_{1}\right)$
 HFAG
 Beauty 2011
 PRELIMINARY

BaBar PRD 79 (2009): 072009			$0.69 \pm 0.03 \pm 0.01$	
BaBar $\chi_{c 0} K_{s}$ PRD 80 (2009):112001			$0.69 \pm 0.52 \pm 0.04 \pm 0.07$	
BaBar J/ ψ (hadronic) K_{S} PRD 69 (2004):052001			$\star \quad 1.56 \pm 0.42 \pm 0.21$	Measurements by
Belle Moriond EW 2011 preliminary		¢	$0.67 \pm 0.02 \pm 0.01$	B-factories
ALEPH 259 (2000)		$!$	$0.84{ }_{-1.04}^{+0.82} \pm 0.16$	Measurements
OPAL EPJ C5, 379 (1998)			$3.20_{-200}^{+1.80} \pm 0.50_{\star}$	before B-factories
		\star	$0.79{ }_{-0.44}^{+0.41}$	
$\begin{aligned} & \text { LHCb } \\ & \text { LHCb-CONF-2911-004 } \end{aligned}$	\star	!	$0.53{ }_{-0.29}^{+0.28} \pm 0.05$	Newcomer, LHCb
Average HFAG			0.68 ± 0.02	(35pb ${ }^{-1}, \mathrm{~A}_{\text {fCP }}=0$ assumed.)
$\begin{array}{lll}-2 & -1 & 0\end{array}$		1	23	

$b \rightarrow c \bar{c} d$ process is pursuit of

(a)
(b)

In $B^{0} \rightarrow D^{+} D^{-}$case,
If tree (a) dominant, $\mathrm{S}_{\mathrm{fCP}} \rightarrow-\sin 2 \phi_{1}, \mathrm{~A}_{\mathrm{fCP}} \rightarrow 0$, while if penguin (b) is substantial, complex phase due to $V_{t d}$ may cause Direct CPV.

Since $B^{0} \rightarrow D^{*+} D^{*}$ - is a $B \rightarrow V V$ mode, the admixture of CP even/odd eigenstates must be determined before measuring CP violation.

$\mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}$reconstruction

One $\mathrm{D}^{+} \rightarrow \mathrm{K}-\pi^{+} \pi^{+}$(or c.c.), three modes for other D .

$$
\mathrm{Br}\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}\right)=(2.09 \pm 0.15 \pm 0.18) \times 10^{-4}
$$

cf. Previous result (PRL98,221802) based on 535M BB, $N_{\text {sig }}=150 \pm 15\left(\mathrm{D}^{-} \rightarrow \mathrm{K}_{S} \pi^{0} \pi^{-}\right.$not used), improvement in $\mathrm{N}_{\text {sig }}$ by data reprocessing is more significant than (cc) K^{0} because of the larger track multiplicity.

$\mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-} \mathrm{CP}$ violation

$S_{\text {fCP }}=-1.06 \pm 0.21 \pm 0.07$
$\mathrm{A}_{\mathrm{fCP}}=+0.43 \pm 0.17 \pm 0.04{ }_{\text {sam }}^{\left(\mathrm{D}-\rightarrow K_{\mathrm{S}^{0} \pi}{ }^{0}-\text { not used because of background forming a peak at }\right.}$
$\mathrm{S}_{\mathrm{fCP}}$ is similar. However $\mathrm{A}_{\mathrm{fCP}}$ has decreased compared to previous publication with 535M B \bar{B} (PRL98,221802).
($\mathrm{S}_{\mathrm{fCP}}=-1.13 \pm 0.37 \pm 0.09, \mathrm{~A}_{\mathrm{fCP}}=+0.91 \pm 0.23 \pm 0.06$)

$\mathrm{B}^{0} \rightarrow \mathrm{D}^{*+} \mathrm{D}^{*}$ branching and polarization

$\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{*+} \mathrm{D}^{*}\right)=(7.82 \pm 0.38 \pm 0.60) \times 10^{-4}$ $R_{0}=0.62 \pm 0.03 \pm 0.01$ (longitudinal pol.)
$R_{\text {perp }}=0.14 \pm 0.02 \pm 0.01$ (CP-odd)

$B^{0} \rightarrow D^{*}+D^{*}-C P$ violation

As a result of data reprocessing, signal yield from $772 \mathrm{M} B \bar{B}$ pairs is $\times 2.2$ larger than the yield with the $657 \mathrm{M} B \bar{B}$ sample used for the previous result (PRD80,111104).
\rightarrow significant improvement ($\mathrm{S}_{\mathrm{fCP}}$ and $\mathrm{A}_{\mathrm{fCP}}$ errors down to 60%)!

If tree only, S_{f} is directly connected to $\sin 2 \phi_{2}$ and $A_{f}=0$.

Interference with $\mathrm{b} \rightarrow \mathrm{d}$ penguin can be solved by isospin analysis.

Mixing diagram

Decay diagram (tree)

There are 3 modes; $\pi \pi, \rho \rho, \rho \pi$. In addition $\mathrm{a}_{1} \pi$.

Extract ϕ_{2}; isospin analysis

$\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \mathrm{~B}^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ branching fractions,
and $B^{0} \rightarrow \pi^{0} \pi^{0}$ Direct CPV are used as inputs to solve this relation.
The correction from $\operatorname{SU}(2)$ breaking effect is still much smaller than measurements' errors.

$B^{0} \rightarrow \rho^{+} \rho^{-}$

$\mathrm{B} \rightarrow \mathrm{VV}$, almost purely longitudinally polarized=CP eigenstate. Small $\operatorname{Br}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)$, i.e. small penguin pollution.

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{L}}=0.941+0.034 /-0.040 \pm 0.030 \\
& \mathrm{~S}_{\mathrm{f}}=0.19 \pm 0.30 \pm 0.07 \\
& \mathrm{~A}_{\mathrm{f}}=0.16 \pm 0.21 \pm 0.07
\end{aligned}
$$

$\mathrm{f}_{\mathrm{L}}=0.992 \pm 0.024+0.026 /-0.013$
$\mathrm{S}_{\mathrm{f}}=0.19 \pm 0.30 \pm 0.07$
$A_{f}=0.16 \pm 0.21 \pm 0.07$

Constraint on ϕ_{2}

As for Δm_{d} measurement

BaBar: D*lv partial recon., opposite side B is tagged by high momentum lepton.

Belle: $\mathrm{D}^{*} l v$ and $\left.\mathrm{D}^{*}\right) \mathrm{X}$ hadronic modes full recon., opposite side B tagging is the one for time-dependent CPV.
$\Delta \mathrm{m}_{\mathrm{d}}$ and B lifetime are obtained simultaneously. With $\sim 20 \%$ of entire $\Upsilon(4 S)$ data, but systematic dominant.

$\Delta \mathrm{m}_{\mathrm{d}}$ without/with B-factories

KM scheme has been tested.

ϕ_{3} precision improved, $\sigma\left(\phi_{3}\right) \sim 10^{\circ}$ (See Y.Horii's talk). Is the unitarity triangle a right triangle?

However, tension with $\operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \tau^{+} v\right)$

$S_{f C P}$ and $\sin 2 \phi_{1} S M$ relation

(1) Decay

(2) Decay with mixing

Interference between (1) and (2) results in CP violation.
$\mathrm{S}_{\mathrm{fCP}}=-\xi_{\mathrm{CP}} \sin 2 \phi_{1}, \xi_{\mathrm{CP}}=-1$ (CP-odd), +1 (CP-even), $\mathrm{A}_{\mathrm{fCP}}=0$. Is there room to accommodate new physics (NP)?

NP room is unlikely in

 $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}}$ decays

SM tree

Same weak phase
If NP penguin is substantial and has different phase, it causes Direct CPV in $\mathrm{B}^{ \pm} \rightarrow \mathrm{J} / \psi \mathrm{K}^{ \pm}$.
No direct CP violation has been observed so far. $-0.76 \pm 0.50 \pm 0.22 \%$ at Belle (PRD82,091104), $(1 \pm 7) \times 10^{-3}$ in PDG2011.
However, there is room for NP in B-B mixing.

Effective ϕ_{1} in penguin decays

as well as

New Physics in the loop; may have a different weak phase.
SM penguin;
No complex phase in decay.
Many two-body and quasi-two body analyses have been done. Since $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}, \mathrm{f}_{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$and non-resonant contributions overlap in invariant mass (as do $\rho^{0} \rightarrow \pi^{+} \pi^{-}$and $f_{0} \rightarrow \pi^{+} \pi^{-}$), recently timedependent Dalitz analyses have been performed in three-body decays such as $\mathrm{B}^{0} \rightarrow\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right) \mathrm{K}_{\mathrm{s}}$ and $\mathrm{B}^{0} \rightarrow\left(\pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{s}}$.

Several contributions are overlapping

- For example, $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{s}}$ final state has several different paths.
- Resolve them by fitting the Dalitz distribution. Same approach is required for $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} \mathrm{K}_{\mathrm{s}}$.

Projections of Dalitz distribution $\left(\mathrm{M}_{\mathrm{K}+\mathrm{K}-}\right)$

Peak around $1 \mathrm{GeV} / \mathrm{c}^{2}: \phi(1020)$ and $\mathrm{f}_{0}(980)$, at $1.5 \mathrm{GeV} / \mathrm{c}^{2}: \mathrm{fX}$, at $3.4 \mathrm{GeV} / \mathrm{c}^{2}: \chi_{\mathrm{co}}$
There are multiple solutions (Belle found 4, BaBar found 2).

Δt distribution in ϕ mass region

PRD82,073011(2010)

Effective ϕ_{1} of "solution 1"

With current statistics, we could not distinguish multiple solutions by the likelihood alone. The preferred solution is shown.
No significant deviation from measurements with $\mathrm{B}^{0} \rightarrow(\mathrm{c} \overline{\mathrm{c}}) \mathrm{K}^{0} .{ }_{31}$

Compilation of effective $\sin 2 \phi_{1}$

Still precision is statistically dominated.
\downarrow
To obtain sensitivity in effective $\sin 2 \phi_{1}$ of $O\left(10^{-2}\right)$, we need $O\left(10 \mathrm{ab}^{-1}\right)$ integrated luminosity.

Future sensitivity

Error of effective $\sin 2 \phi_{1}$ would be $0.03\left(\eta^{\prime} \mathrm{K}^{0}\right)-0.1\left(\mathrm{~K}_{S} \mathrm{~K}_{S} \mathrm{~K}_{\mathrm{S}}\right)$.

Summary

- $\sin 2 \phi_{1}=0.68 \pm 0.02$ in World Average
- It is a firm SM reference point.
- Constraint on $\phi_{2}: 89.0+4.4 /-4.2$ deg.
- The unitarity triangle appears to be a right triangle.
- $\Delta \mathrm{m}_{\mathrm{d}}$ is precisely determined by B-factories.
- Now 1\% precision has been achieved, giving a firm reference.
- Tension around $\operatorname{Br}\left(\mathrm{B}^{+} \rightarrow \tau^{+} v\right)$
- Need an update of measurement.
- Comparing to $\sin 2 \phi_{1}$ measurement, expect mixing has room for NP.
- CPV in $\mathrm{b} \rightarrow$ s penguin modes
- Reach $O\left(10^{-2}\right)$ sensitivity with Super B-factories.

Backup slides

$B^{0} \rightarrow(\rho \pi)^{0}, B^{0} \rightarrow a_{1}{ }^{ \pm} \pi^{\mp}$

BaBar (384M BB) $\mathrm{a}_{1}{ }^{ \pm} \pi^{\mp}$; obtained $\alpha^{\text {eff }}\left(=\phi_{2}{ }^{\text {eff }}\right.$)

Coefficients of Dalitz plot functions are interrupted to CPV parameters of quasi-2-body decays, $B \rightarrow \rho^{+} \pi^{-}$and $B \rightarrow \rho^{0} \pi^{0}$

$$
c^{+}=\frac{U_{+}^{-}}{U_{+}^{+}}, \mathcal{C}^{-}=\frac{U_{-}^{-}}{U_{-}^{+}}, \mathcal{S}^{+}=\frac{2 I_{+}}{U_{+}^{+}}, \mathcal{S}^{-}=\frac{2 I_{-}^{-}}{U_{-}^{+}}, \mathcal{A}_{\mu \mu}^{C P}=\frac{U_{+}^{+}-U_{+}^{+}}{U_{+}^{+}+U_{-}^{+}} \quad \mathcal{A}_{\rho^{0} \pi^{0}}=\frac{U_{0}^{-}}{U_{0}^{+}}, \text {and } \mathcal{S}_{\rho^{\rho} \pi^{0}}=\frac{2 I_{0}}{U_{0}^{+}}
$$

$$
c \equiv \frac{\mathcal{C}^{+}+\mathcal{C}^{-}}{2}, \quad \Delta \mathcal{C} \equiv \frac{\mathcal{C}^{+}-\mathcal{C}^{-}}{2}, \quad \mathcal{S} \equiv \frac{\mathcal{S}^{+}+\mathcal{S}^{-}}{2}, \quad \Delta \mathcal{S} \equiv \frac{\mathcal{S}^{+}-\mathcal{S}^{-}}{2}
$$

Belle 449M B \bar{B} (PRL98 221602)

$$
\begin{aligned}
\mathcal{A}_{\rho \pi}^{G P} & =-0.12 \pm 0.05 \pm 0.04 \\
\mathcal{C} & =-0.13 \pm 0.09 \pm 0.05 \\
\Delta \mathcal{C} & =+0.36 \pm 0.10 \pm 0.05 \\
\mathcal{S} & =+0.06 \pm 0.13 \pm 0.05 \\
\Delta \mathcal{S} & =-0.08 \pm 0.13 \pm 0.05 \\
\mathcal{A}_{\rho^{\circ} \pi^{0}} & =-0.49 \pm 0.36 \pm 0.28 \\
\mathcal{S}_{\rho^{0} \pi^{0}} & =+0.17 \pm 0.57 \pm 0.35
\end{aligned}
$$

BABAR 375M B̄̄ (PRD76 012004)

$\mathcal{A}_{\rho \pi}=-0.14 \pm 0.05 \pm 0.02$
$C=0.15 \pm 0.09 \pm 0.05$
$S=-0.03 \pm 0.11 \pm 0.04$
$\Delta C=0.39 \pm 0.09 \pm 0.09$
$\begin{aligned} \Delta S & =-0.01 \pm 0.14 \pm 0.06 \\ C_{00} & \frac{U_{0}^{-}}{U_{0}^{+}}=\end{aligned}-0.10 \pm 0.40 \pm 0.53$
$S_{\infty 0}=\frac{2 I_{0}}{U_{0}^{+}}=\quad 0.04 \pm 0.44 \pm 0.18$

Multiple solutions

Belle found 4 solutions

	Solution 1	Solution 2	Solution 3	Solution 4
$\mathcal{A}_{C P P}\left(f_{0}(980) K_{S}^{0}\right)$	$-0.30 \pm 0.29 \pm 0.11 \pm 0.09$	$-0.20 \pm 0.15 \pm 0.08 \pm 0.05$	$+0.02 \pm 0.21 \pm 0.09 \pm 0.09$	$-0.18 \pm 0.14 \pm 0.08 \pm 0.06$
$\phi_{1}^{\text {eff }}\left(f_{0}(980) K_{S}^{0}\right)$	$(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}$	$(26.1 \pm 7.0 \pm 2.4 \pm 2.5)^{\circ}$	$(25.6 \pm 7.6 \pm 2.9 \pm 0.8)^{\circ}$	$(26.3 \pm 5.7 \pm 2.4 \pm 5.8)^{\circ}$
$\mathcal{A}_{C P}\left(\phi(1020) K_{S}^{0}\right)$	$+0.04 \pm 0.20 \pm 0.10 \pm 0.02$	$+0.08 \pm 0.18 \pm 0.10 \pm 0.03$	$-0.01 \pm 0.20 \pm 0.11 \pm 0.02+0.21 \pm 0.18 \pm 0.11 \pm 0.05$	
$\phi_{1}^{\text {eff }}\left(\phi(1020) K_{S}^{0}\right)$	$(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$	$(26.2 \pm 8.8 \pm 2.7 \pm 1.2)^{\circ}$	$(27.3 \pm 8.6 \pm 2.8 \pm 1.3)^{\circ}$	$(24.3 \pm 8.0 \pm 2.9 \pm 5.2)^{\circ}$
$\mathcal{A}_{C P P}$ (others)	$-0.14 \pm 0.11 \pm 0.08 \pm 0.03$	$-0.06 \pm 0.15 \pm 0.08 \pm 0.04$	$-0.03 \pm 0.09 \pm 0.08 \pm 0.03$	$+0.04 \pm 0.11 \pm 0.08 \pm 0.02$
$\phi_{1}^{\text {eff }}$ (others)	$(24.9 \pm 6.4 \pm 2.1 \pm 2.5)^{\circ}$	$(29.8 \pm 6.6 \pm 2.1 \pm 1.1)^{\circ}$	$(26.2 \pm 5.9 \pm 2.3 \pm 1.5)^{\circ}$	$(23.8 \pm 5.5 \pm 1.9 \pm 6.4)^{\circ}$

The preferred solution can not be selected by the fit likelihood value alone. With external information, solution 1 is preferred.

BaBar found 2 solutions in low-mass fit, (1) is chosen as nominal.

Name	Solution (1)	Solution (2)	Correlation			
			1	2	3	4
$1 A_{C P}\left(\phi K_{S}^{0}\right)$	$0.14 \pm 0.19 \pm 0.02$	0.13 ± 0.18	1.0	-0.09	-0.28	0.09
$2 \beta_{\text {eff }}\left(\phi K_{S}^{0}\right)$	$0.13 \pm 0.13 \pm 0.02$	0.14 ± 0.14		1.0	0.54	0.65
$3 A_{C P}\left(f_{0} K_{S}^{0}\right)$	$0.01 \pm 0.26 \pm 0.07$	-0.49 ± 0.25			1.0	0.25
$4 \beta_{\text {eff }}\left(f_{0} K_{S}^{0}\right)$	$0.15 \pm 0.13 \pm 0.03$	3.44 ± 0.19				1.0

Again multiple solutions

Belle found 4 solutions. After ensemble test checks and by using external information, two of them are chosen as possible physical solutions. Solution 1 is preferred $\left(\mathrm{K}^{*}{ }_{0}(1430) \pi\right.$ fraction and $\mathrm{K}_{\mathrm{s}} \pi$ mass spectrum). (PRD79,072004(2009))

Parameter	Solution 1 $(-2 \ln L=18472.5)$	Solution 2 $(-2 \ln L=18465.5)$
$\mathrm{A}\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{S}}\right)$	$0.08 \pm 0.19 \pm 0.03 \pm 0.04$	$0.23 \pm 0.19 \pm 0.03 \pm 0.04$
$\beta\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{S}}\right)=\phi_{1}\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}\right)$	$(36.0 \pm 9.8 \pm 2.1 \pm 2.1)^{\circ}$	$(56.2 \pm 10.4 \pm 2.1 \pm 2.1)^{\circ}$
$\mathrm{A}\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)$	$-0.05 \pm 0.26 \pm 0.10 \pm 0.03$	$-0.14 \pm 0.26 \pm 0.10 \pm 0.03$
$\beta\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)=\phi_{1}\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)$	$(10.2 \pm 8.9 \pm 3.0 \pm 1.9)^{\circ}$	$(33.4 \pm 10.4 \pm 3.0 \pm 1.9)^{\circ}$

Again multiple solutions

Parameter	Solution 1	Solution 2
$\mathrm{C}\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}\right)=-\mathrm{A}\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}\right)$	$0.08 \pm 0.19 \pm 0.03 \pm 0.04$	$0.23 \pm 0.19 \pm 0.03 \pm 0.04$
$\beta\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}\right)=\phi_{1}\left(\mathrm{f}_{0} \mathrm{~K}_{\mathrm{s}}\right)$	$(36.0 \pm 9.8 \pm 2.1 \pm 2.1)^{\circ}$	$(56.2 \pm 10.4 \pm 2.1 \pm 2.1)^{\circ}$
$\mathrm{C}\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)=-\mathrm{A}\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)$	$-0.05 \pm 0.26 \pm 0.10 \pm 0.03$	$-0.14 \pm 0.26 \pm 0.10 \pm 0.03$
$\beta\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)=\phi_{1}\left(\rho^{0} \mathrm{~K}_{\mathrm{s}}\right)$	$(10.2 \pm 8.9 \pm 3.0 \pm 1.9)^{\circ}$	$(33.4 \pm 10.4 \pm 3.0 \pm 1.9)^{\circ}$

BaBar found 2 solutions.
(PRD80,112001(2009))

