Time-dependent CPV and mixing at B-factories

Kenkichi Miyabayashi (Nara Women's University, Japan) Epiphany conference, Cracow 2012 Jan. 9th

KM unitarity triangle and CPV parameter convention

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$ by Wolfenstein parametrization Irreducible complex phase $(\overline{\rho},\overline{\eta})$ causes CP Violation (CPV)! $b \rightarrow u V_{ud} V_{ub} \star$ Comprehensive test; transition measure all the angles and sides. $\downarrow \rightarrow u \lor ud \lor ub \lor \phi_2 \lor td \lor tb^*$ $(\alpha) B^0-B^0$ mixing (γ) φ 3 (β)φ1 $(0,0) \quad V_{cd} V_{cb}^{*} \quad (1,0)$ **B** system : very good place, $V_{td} V_{tb}^{*} + V_{cd} V_{cb}^{*} + V_{ud} V_{ub}^{*} = 0$ all the angles are O(0.1)!

Angle measurements and mixing

Time-dependent CPV

In order to perform such studies

	PDG2011	Charmonium modes	5		
Γ ₁₅₆	$\eta_c K^0$	(8.9 ± 1.6) × 10 ⁻⁴	
Γ ₁₅₇	$\eta_c K^* (892)^0$	(6.1 ± 1.0) × 10 ⁻⁴	
Γ ₁₅₈	$\eta_{c}(2S)K^{*0}$	<	3.9	$\times 10^{-4}$	CL=90%
Γ ₁₅₉	$h_{c}(1P)K^{*0}$	<	4	$\times 10^{-4}$	CL=90%
Γ ₁₆₀	$J/\psi(1S)K^0$	(8.71± 0.32) × 10 ⁻⁴	
Г ₁₆₁	$J/\psi(1S)K^+\pi^-$	(1.2 ± 0.6) × 10 ⁻³	_
Γ ₁₆₂	$J/\psi(1S) K^*(892)^0$	(1.33± 0.06)) × 10 ⁻³	
Γ ₁₆₃	$J/\psi(1S)\eta K_S^0$	(8 ± 4) × 10 ⁻⁵	
Г ₁₆₄	$J/\psi(1S)\eta'K_S^0$	<	2.5	$\times 10^{-5}$	CL=90%

B meson is so heavy that many decay modes are available. Branching fraction to the modes usable for CPV is limited. \rightarrow Huge (O(10⁸)) amount of B mesons is necessary. \rightarrow Measurement of time evolution of B meson pair is required.

Two B-factories at KEK and SLAC

 $8GeV(e^{-})X3.5GeV(e^{+}),$ L_{max} = 2.1×10³⁴cm⁻²s⁻¹

9GeV(e⁻)X3.1GeV(e⁺), $L_{max} = 1.2 \times 10^{34} cm^{-2} s^{-1}$

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Signal yield increased more than N_{BB} compared to the previous publication (PRL98,031802), thanks to the data reprocessing with improved tracking.

	J/ψ K _s	$J/ψ$ K_L	ψ (2S) K_S	$\chi_{c1} \mathbf{K}_{S}$	N _{BB}
N _{sig}	12727±115	10087±154	1981±46	943±33	772 M
Purity(%)	97	63	93	89	
N _{sig} (prev.)	7484±87	6512±123	N/A	N/A	535 M
Purity(%) (prev.)	97	59			

$sin2\phi_1(=sin2\beta)$ at BaBar (465M BB)

$b \rightarrow c\bar{c}d$ process is pursuit of

In B⁰ \rightarrow D⁺D⁻ case, If tree (a) dominant, S_{fCP} \rightarrow -sin2 ϕ_1 , A_{fCP} \rightarrow 0, while if penguin (b) is substantial, complex phase due to V_{td} may cause Direct CPV.

Since $B^0 \rightarrow D^{*+}D^{*-}$ is a $B \rightarrow VV$ mode, the admixture of CP even/odd eigenstates must be determined before measuring CP violation.

$B^0 \rightarrow D^+D^-$ reconstruction

cf. Previous result (PRL98,221802) based on 535M BB, N_{sig}=150±15 (D⁻ \rightarrow K_S $\pi^{0}\pi^{-}$ not used), improvement in N_{sig} by data reprocessing is more significant than (cc) K⁰ because of the larger track multiplicity. 13

$B^0 \rightarrow D^+D^- CP$ violation

$B^0 \rightarrow D^{*+}D^{*-}$ branching and he preliminary polarization Events / (0.00175 GeV) Events / (0.05 60 F 300 N_{sia}=1225±59 50 250 (was 553±30 for 40 657M BB, 200 30 PRD80,111104.) 150 20 Signal 100 10 B.G. 0[⊑] -1.0 50 -0.5 0.5 0.0 1.0 0 Events / (0.05) 5.30 70 E 5.28 5.24 5.26 M_{BC} (GeV) 60 50 $Br(B^0 \rightarrow D^{*+}D^{*-}) = (7.82 \pm 0.38 \pm 0.60) \times 10^{-4}$ 40 $= 0.62 \pm 0.03 \pm 0.01$ (longitudinal pol.) R_0 30 $= 0.14 \pm 0.02 \pm 0.01$ (CP-odd) 20 R_{perp} 10 F

0

-0.5

0.0

1.015

 $\cos(\theta_1)$

0.5

As a result of data reprocessing, signal yield from 772M BB pairs is $\times 2.2$ larger than the yield with the 657M BB sample used for the previous result (PRD80,11104).

 \rightarrow significant improvement (S_{fCP} and A_{fCP} errors down to 60%)!

ϕ_2 measurement

If tree only, S_f is directly connected to $sin2\phi_2$ and $A_f=0$.

Interference with $b \rightarrow d$ penguin can be solved by isospin analysis.

(ρ,η)

Φ2

(α**)**

_{φ3}(γ)

(0,0)

V_{td} V_{tb}

 $(\beta) \phi_1$

(1,0)

Vud Vub

Mixing diagram

Decay diagram (tree)

There are 3 modes; $\pi\pi$, $\rho\rho$, $\rho\pi$. In addition $a_1\pi$.

Extract ϕ_2 ; isospin analysis

M. Gronau and D. London, PRL 65, 3381 (1990)

 $B^0 \rightarrow \pi^+\pi^-$, $\pi^0\pi^0$, $B^{\pm} \rightarrow \pi^{\pm}\pi^0$ branching fractions,

and $B^0 \rightarrow \pi^0 \pi^0$ Direct CPV are used as inputs to solve this relation. The correction from SU(2) breaking effect is still much smaller than measurements' errors.

$B^0 \rightarrow \rho^+ \rho^-$

B→ VV, almost purely longitudinally polarized=CP eigenstate. Small Br(B⁰→ $\rho^{0}\rho^{0}$), i.e. small penguin pollution.

As for Δm_d measurement

BaBar: D^*lv partial recon., opposite side B is tagged by high momentum lepton.

Belle: D^*lv and $D^{(*)}X$ hadronic modes full recon., opposite side B tagging is the one for time-dependent CPV.

 Δm_d and B lifetime are obtained simultaneously. With ~20% of entire $\Upsilon(4S)$ data, but systematic dominant.

Δm_d without/with B-factories

ALEPH (3 analyses) DELPHI ' (5 analyses) 1.3 (3 analyses) OPAL (5 analyses) $0.495 \pm 0.033 \pm 0.027 \text{ ps}^{-1}$ CDF1 (4 analyses) $0.506 \pm 0.020 \pm 0.016 \text{ ps}^{-1}$ D0(1 analysis) BABAR $0.506 \pm 0.006 \pm 0.004 \text{ ps}^{-1}$ (4 analyses) BELLE $0.509 \pm 0.004 \pm 0.005 \text{ ps}^{-1}$ (3 analyses) $0.507 \pm 0.004 \text{ ps}^{-1}$ Average of above after adjustments $0.498 \pm 0.032 \text{ ps}^{-1}$ CLEO+ARGUS $(\chi_A \text{ measurements})$ $0.507 \pm 0.004 \text{ ps}^{-1}$ World average • for PDG 2011 0.5 0.55 0.4 0.45 HFAG average $\Delta m_d (ps^{-1})$ without adjustments

 $^{0.446 \pm 0.026 \pm 0.019 \text{ ps}^{-1}}_{0.519 \pm 0.018 \pm 0.011 \text{ ps}^{-1}}$ BaBar and Belle results $^{0.444 \pm 0.028 \pm 0.028 \text{ ps}^{-1}}_{0.444 \pm 0.028 \pm 0.028 \text{ ps}^{-1}}$ than LEP and Tevatron $^{0.479 \pm 0.018 \pm 0.015 \text{ ps}^{-1}}_{0.479 \pm 0.018 \pm 0.015 \text{ ps}^{-1}}$ experiments.

^{ps⁻¹} Now 1% precision has
 ^{ps⁻¹} been achieved. This
 ^{ps⁻¹} gives another reference point to constrain unitarity triangle, i.e. |V_{td}| in the SM framework.

KM scheme has been tested.

However, tension with $Br(B^+ \rightarrow \tau^+ \nu)$

S_{fCP} and $sin2\phi_1$ SM relation

Interference between (1) and (2) results in CP violation.

 S_{fCP} =- ξ_{CP} sin2 ϕ_1 , ξ_{CP} =-1 (CP-odd), +1 (CP-even), A_{fCP} =0. Is there room to accommodate new physics (NP)?

NP room is unlikely in b→ccs decays

However, there is room for NP in B-B mixing.

Effective ϕ_1 in penguin decays

Many two-body and quasi-two body analyses have been done. Since $\phi \rightarrow K^+K^-$, $f_0 \rightarrow K^+K^-$ and non-resonant contributions overlap in invariant mass (as do $\rho^0 \rightarrow \pi^+\pi^-$ and $f_0 \rightarrow \pi^+\pi^-$), recently timedependent Dalitz analyses have been performed in three-body decays such as $B^0 \rightarrow (K^+K^-)K_S$ and $B^0 \rightarrow (\pi^+\pi^-)K_S$.

Several contributions are overlapping

- For example, B⁰→K⁺K⁻K_S final state has several different paths.
- Resolve them by fitting the Dalitz distribution. Same approach is required for $B^0 \rightarrow \pi^+\pi^-K_S$.

Projections of Dalitz distribution (M_{K+K-})

Peak around 1GeV/c² : ϕ (1020) and f₀(980), at 1.5GeV/c² : fX, at 3.4GeV/c² : χ_{c0} There are multiple solutions (Belle found 4, BaBar found 2). 29

Δt distribution in ϕ mass region

Effective ϕ_1 of "solution 1"

With current statistics, we could not distinguish multiple solutions by the likelihood alone. The preferred solution is shown. No significant deviation from measurements with $B^0 \rightarrow (c\overline{c}) K^0$. ₃₁

Compilation of effective $sin2\phi_1$

	sir	$a(2\beta^{\text{eff}}) \equiv$	sin(2¢	eff 1 EndOfy	AG ear 2011 MINABY
h i ana	World Ave	rane	- 11	i 0.6	8 + 0.02
o→ccs	BaBar	Hage	····	0.26 ± 0.2	6 ± 0.02
X	Belle			н C	0.90 +0.09
	Average			C	0.56 + 0.18
Ŷ	BaBar		-	0.57 ± 0.0	8 ± 0.02
	Belle			0.64 ± 0.1	0 ± 0.04
···· · · · · · · · · · · · · · · · · ·	Average :			0.5	9 ± 0.07
<u> </u>	Bollo			$0.94_{-0.2}$	$\frac{1}{24} \pm 0.00$
×	Average	1	<u>Ľ</u> ×	0.30 ± 0.3	2 ± 0.00 2 + 0.19
$\sim \mathbf{x}$	BaBar			0.55 + 0.2	0 + 0.03
Ϋ́ Υ	Belle			$- 0.67 \pm 0.3$	1 ± 0.08
β	Average		La	0.5	7 ± 0.17
Ś	BaBar	•		$0.35^{+0.26}_{-0.31} \pm 0.0$	6 ± 0.03
X	Belle			$0.64^{+0.19}_{-0.25} \pm 0.0$	9 ± 0.10
್ರಿ	Average :	1		C	$0.54 \begin{array}{c} +0.18 \\ -0.21 \end{array}$
Ś	BaBar			0.55 -0.2	$\frac{10}{29} \pm 0.02$
×	Belle		* 1 2	0.11 ± 0.4	6 ± 0.07
<u> </u>	Average			0.4	5 ± 0.24
~s	Ballo	i (: 0	-60 +8:18
	Average				1.03 -8:19
······ 0·····	BaBar			$\frac{48}{1052} + 0.0$	6 ± 0.13
	Average		- <mark></mark>	0.4	8 + 0.53
	BaBar		0	.20 ± 0.52 ± 0.0	7 ± 0.07
s - x	Average		0	0.2	0 ± 0.53
···· X ··· · ··	BaBar	m m		-0.72 ± 0.7	1 ± 0.08
ы С К С К С	A verage :	×		-0.7	2 ± 0.71
ne 🗻	BaBar		1		0.97 +0.03
Zĸ	Average				0.97
⊻°° →	BaBar			$.01 \pm 0.31 \pm 0.0$	5 ± 0.09
····'ස~	BaBar	·····		0.0	1 ± 0.33
	Belle			0.00 ± 0.00	0.2 + 0.03
5 ×	Average			0.8	2 ± 0.07
<u> </u>					
-2	-1	0		1	2

Still precision is statistically dominated.

To obtain sensitivity in effective $\sin 2\phi_1$ of $O(10^{-2})$, we need $O(10ab^{-1})$ integrated luminosity.

Error of effective sin2 ϕ_1 would be 0.03(η 'K⁰)-0.1(K_SK_SK_S).

Summary

- sin2\u03c6₁=0.68±0.02 in World Average
 It is a firm SM reference point.
- Constraint on ϕ_2 : 89.0 +4.4/-4.2 deg.
 - The unitarity triangle appears to be a right triangle.
- Δm_d is precisely determined by B-factories.
 - Now 1% precision has been achieved, giving a firm reference.
- Tension around $Br(B^+ \rightarrow \tau^+ \nu)$
 - Need an update of measurement.
 - Comparing to sin2 ϕ_1 measurement, expect mixing has room for NP.
- CPV in b \rightarrow s penguin modes
 - Reach $O(10^{-2})$ sensitivity with Super B-factories.

Backup slides

$B^0 \rightarrow (\rho \pi)^0$, $B^0 \rightarrow a_1^{\pm} \pi^{\mp}$

Coefficients of Dalitz plot functions are interrupted to CPV parameters of quasi-2-body decays, $B \rightarrow \rho^+ \pi^-$ and $B \rightarrow \rho^0 \pi^0$

$$\begin{split} \mathcal{C}^+ &= \frac{U^-_+}{U^+_+} \,, \quad \mathcal{C}^- &= \frac{U^-_-}{U^+_-} \,, \quad \mathcal{S}^+ &= \frac{2I_+}{U^+_+} \,, \quad \mathcal{S}^- &= \frac{2I_-}{U^+_-} \,, \quad \mathcal{A}^{CP}_{\rho\sigma\tau} &= \frac{U^+_+ - U^+_-}{U^+_+ + U^+_-} \\ \mathcal{C} &\equiv \frac{\mathcal{C}^+ + \mathcal{C}^-}{2} \,, \quad \Delta \mathcal{C} &\equiv \frac{\mathcal{C}^+ - \mathcal{C}^-}{2} \,, \quad \mathcal{S} &\equiv \frac{\mathcal{S}^+ + \mathcal{S}^-}{2} \,, \quad \Delta \mathcal{S} &\equiv \frac{\mathcal{S}^+ - \mathcal{S}^-}{2} \end{split}$$

Belle 449M BB (PRL98 221602)

$\mathcal{A}_{\rho\pi}^{CP}$	=	$-0.12 \pm 0.05 \pm 0.04$
С	=	$-0.13 \pm 0.09 \pm 0.05$
ΔC	=	$+0.36\pm 0.10\pm 0.05$
S	=	$+0.06\pm 0.13\pm 0.05$
ΔS	=	$-0.08 \pm 0.13 \pm 0.05$
$\mathcal{A}_{\rho^0\pi^0}$	=	$-0.49 \pm 0.36 \pm 0.28$
$S_{\rho^0 \pi^0}$	=	$+0.17\pm0.57\pm0.35$

$$\mathcal{A}_{\rho^{0}\pi^{0}}=-\frac{U_{0}^{-}}{U_{0}^{+}}\,,\quad\text{and}\quad\mathcal{S}_{\rho^{0}\pi^{0}}=\frac{2I_{0}}{U_{0}^{+}}$$

BABAR 375M BB (PRD76 012004)

Multiple solutions

Belle found 4 solutions

	Solution 1	Solution 2	Solution 3	Solution 4
$A_{CP}(f_0(980)K_S^0)$	$-0.30\pm0.29\pm0.11\pm0.09$	$-0.20\pm0.15\pm0.08\pm0.05$	$+0.02\pm0.21\pm0.09\pm0.09$	$-0.18\pm0.14\pm0.08\pm0.06$
$\phi_1^{\text{eff}}(f_0(980)K_S^0)$	$(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}$	$(26.1 \pm 7.0 \pm 2.4 \pm 2.5)^{\circ}$	$(25.6 \pm 7.6 \pm 2.9 \pm 0.8)^{\circ}$	$(26.3 \pm 5.7 \pm 2.4 \pm 5.8)^{\circ}$
$A_{CP}(\phi(1020)K_{S}^{0})$	$+0.04\pm0.20\pm0.10\pm0.02$	$+0.08\pm0.18\pm0.10\pm0.03$	$-0.01\pm0.20\pm0.11\pm0.02$	$+0.21\pm0.18\pm0.11\pm0.05$
$\phi_1^{\text{eff}}(\phi(1020)K_S^0)$	$(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$	$(26.2 \pm 8.8 \pm 2.7 \pm 1.2)^{\circ}$	$(27.3 \pm 8.6 \pm 2.8 \pm 1.3)^{\circ}$	$(24.3 \pm 8.0 \pm 2.9 \pm 5.2)^{\circ}$
$\mathcal{A}_{CP}(\text{others})$	$-0.14\pm0.11\pm0.08\pm0.03$	$-0.06\pm0.15\pm0.08\pm0.04$	$-0.03\pm0.09\pm0.08\pm0.03$	$+0.04\pm0.11\pm0.08\pm0.02$
$\phi_1^{\text{eff}}(\text{others})$	$(24.9 \pm 6.4 \pm 2.1 \pm 2.5)^{\circ}$	$(29.8 \pm 6.6 \pm 2.1 \pm 1.1)^{\circ}$	$(26.2 \pm 5.9 \pm 2.3 \pm 1.5)^{\circ}$	$(23.8 \pm 5.5 \pm 1.9 \pm 6.4)^{\circ}$

The preferred solution can not be selected by the fit likelihood value alone. With external information, solution 1 is preferred.

BaBar found 2 solutions in low-mass fit, (1) is chosen as nominal.

Name	Solution (1)	Solution (2)		Corre	elation	
			1	2	3	4
$1 A_{CP}(\phi K_{S}^{0})$	$0.14 \pm 0.19 \pm 0.02$	0.13 ± 0.18	1.0	-0.09	-0.28	0.09
$2 \beta_{eff}(\phi K_s^0)$	$0.13 \pm 0.13 \pm 0.02$	0.14 ± 0.14		1.0	0.54	0.65
$3 A_{CP}(f_0 K_S^0)$	$0.01 \pm 0.26 \pm 0.07$	-0.49 ± 0.25			1.0	0.25
$4 \beta_{eff}(f_0 K_s^0)$	$0.15 \pm 0.13 \pm 0.03$	3.44 ± 0.19				1.0

Again multiple solutions

Belle found 4 solutions. After ensemble test checks and by using external information, two of them are chosen as possible physical solutions. Solution 1 is preferred $(K^{*+}_{0}(1430)\pi)$ fraction and $K_{S}\pi$ mass spectrum). (PRD79,072004(2009))

Parameter	Solution 1 (-2In <i>L</i> =18472.5)	Solution 2 (-2ln <i>L</i> =18465.5)
$A(f_0K_S)$	0.08±0.19±0.03±0.04	0.23±0.19±0.03±0.04
$\beta(f_0K_S) = \phi_1(f_0K_S)$	(36.0±9.8±2.1±2.1)°	(56.2±10.4±2.1±2.1)°
Α(ρ ⁰ K _S)	-0.05±0.26±0.10±0.03	-0.14±0.26±0.10±0.03
$\beta(\rho^0 K_S) = \phi_1(\rho^0 K_S)$	(10.2±8.9±3.0±1.9)°	(33.4±10.4±3.0±1.9)°

Again multiple solutions

Parameter	Solution 1	Solution 2
$C(f_0K_S) = -A(f_0K_S)$	0.08±0.19±0.03±0.04	0.23±0.19±0.03±0.04
$\beta(f_0K_S)=\phi_1(f_0K_S)$	(36.0±9.8±2.1±2.1)°	(56.2±10.4±2.1±2.1)°
C(ρ ⁰ K _S)=-A(ρ ⁰ K _S)	-0.05±0.26±0.10±0.03	-0.14±0.26±0.10±0.03
$β(ρ^0 K_S) = φ_1(ρ^0 K_S)$	(10.2±8.9±3.0±1.9)°	(33.4±10.4±3.0±1.9)°

BaBar found 2 solutions. (PRD80,112001(2009))