Rare B decays

Mikołaj Misiak
 (University of Warsaw)

1. $B_{s} \rightarrow \mu^{+} \mu^{-}-$the highlight of $2011 / 2012$
2. Low-energy effective Lagrangian
3. More on $B_{s} \rightarrow l^{+} l^{-}$and $B^{0} \rightarrow l^{+} l^{-}$
4. $\bar{B} \rightarrow X_{s} \gamma$: the photon spectrum and CP asymmetry
5. Processes generated by the quark-level $b \rightarrow s l^{+} l^{-}$transition

6. Summary

Not covered:
Purely hadronic decays, $b \rightarrow d$ transitions, $b \rightarrow s \nu \bar{\nu}$.

$B_{s} \rightarrow \mu^{+} \mu^{-}$- the highlight of $2011 / 2012$

- Strongly suppressed loop-generated process in the SM

$$
\mathcal{B}_{\mathrm{SM}}=(3.34 \pm 0.21) \times 10^{-9}
$$

- Very sensitive to new physics even in models with Minimal Flavour Violation (MFV). Enhancements by orders of magnitude possible, even when constraints from all the other measurements are taken into account.
- Clear experimental signature: PEAK in the dimuon invariant mass.
- CDF bound (arXiv:1107.2304): $\mathcal{B}<40 \times 10^{-9} @ 95 \%$ CL.

If interpreted as observation: $\mathcal{B}=\left(18_{-9}^{+11}\right) \times 10^{-9}$.

- LHCb \& CMS combination at EPS-2011: $\mathcal{B}<10.8 \times 10^{-9} @ 95 \%$ CL. Since then, the recorded data samples have increased by factors of around three (LHCb) and five (CMS). Updates? ATLAS?

B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_{W}$.

We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $\boldsymbol{m} \sim M_{W}$.

$Q_{\boldsymbol{n}}$ - local interaction terms (operators), $\quad \boldsymbol{C}_{\boldsymbol{n}}$ - coupling constants (Wilson coefficients)
Information on the electroweak-scale physics is encoded in the values of $C_{i}(\mu)$, e.g.,

\qquad

This is a modern version of the Fermi theory for weak interactions. It is "nonrenormalizable" in the traditional sense but actually renormalizable. It is also predictive because all the C_{i} are calculable, and only a finite number of them is necessary at each given order in the (external momenta) $/ M_{W}$ expansion.

Advantages: Resummation of $\left(\alpha_{s} \ln \frac{M_{W}^{2}}{\mu^{2}}\right)^{n}$ using renormalization group, easier account for symmetries.

Operators (dim 6) that matter for $\boldsymbol{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$read
$Q_{A}=\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right)$
$\boldsymbol{Q}_{S(P)}=\left(\overline{\boldsymbol{b}} \gamma_{5} s\right)\left(\overline{\boldsymbol{\mu}}\left(\gamma_{5}\right) \boldsymbol{\mu}\right)=\frac{\boldsymbol{i}\left(\bar{b} \gamma^{\alpha} \gamma_{5} s\right) \partial_{\alpha}\left(\bar{\mu}\left(\gamma_{5}\right) \boldsymbol{\mu}\right)}{\boldsymbol{m}_{b}+\boldsymbol{m}_{s}}+\underset{\substack{\text { vandings } \\ \text { by boul }}}{\boldsymbol{E}}+\underset{\substack{\text { totala } \\ \text { deriative }}}{\boldsymbol{T}}$

Necessary non-perturbative input:

$$
\langle 0| \bar{b} \gamma^{\alpha} \gamma_{5} s\left|B_{s}(p)\right\rangle=i p^{\alpha} f_{B_{s}}
$$

Recent lattice determinations
$\begin{aligned} & \text { Recent lattice determinations } \\ & \text { of the } \boldsymbol{B}_{s} \text {-meson decay constant: }\end{aligned} \quad \boldsymbol{f}_{B_{s}}=\left\{\begin{array}{lll}225.0(4.0) \mathrm{MeV}, & \text { HPQCD, } & \text { arXiv:1110.4150 } \\ 242.0(9.5) \mathrm{MeV}, & \text { FNAL/MILC, } & \text { arXiv:1112.3051 }\end{array}\right.$

Branching ratio:
$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\frac{|N|^{2}}{8 \pi} M_{B_{s}}^{3} f_{B_{s}}^{2} \tau_{B_{s}}\left[\left|r C_{A}-u C_{P}\right|^{2}+\left|u C_{S}\right|^{2}\left(1-r^{2}\right)\right] \sqrt{1-r^{2}}$
where $\quad N=\frac{V_{t b}^{*} V_{t s} G_{F}^{2} M_{W}^{2}}{\pi^{2}}, \quad r=\frac{2 m_{\mu}}{M_{B_{s}}} \quad$ and $\quad u=\frac{M_{B_{s}}}{m_{b}+m_{s}}$.

Evaluation of the Wilson coefficients in the SM:

$C_{A}=\frac{1}{2} Y_{0}\left(m_{t}^{2} / M_{W}^{2}\right), \quad Y_{0}(x)=\frac{3 x^{2}}{8(x-1)^{2}} \ln x+\frac{x^{2}-4 x}{8(x-1)}$,
$C_{S, P}=\mathcal{O}\left(\frac{m_{\mu}}{M_{W}}\right)$.

Effects of $C_{S, P}$ are on the branching ratio are suppressed by $M_{B_{s}}^{2} / M_{W}^{2} \Rightarrow$ negligible.
Thus, only C_{A} matters in the SM.

Evaluation of the Wilson coefficients beyond the SM.

 Example 1: the Two-Higgs-Doublet Model II

$$
\tan \beta=v_{2} / v_{1}, \quad z=M_{H^{ \pm}}^{2} / m_{t}^{2}
$$

$$
C_{S} \simeq C_{P} \simeq \frac{m_{\mu} m_{b} \tan ^{2} \beta}{4 M_{W}^{2}} \frac{\ln z}{z-1}>0
$$

H.E. Logan and U. Nierste, NPB 586 (2000) 39 $(\mathcal{O}(\tan \beta)$ neglected $)$
$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \simeq$ (const.) $\left[\left|\frac{2 m_{\mu}}{M_{B_{s}}} C_{A}-C_{P}\right|^{2}+\left|C_{S}\right|^{2}\right]$
$C_{A}=\underset{\text { positive }}{C_{\mathrm{S}}^{\mathrm{SM}}}+\underset{\text { small }}{\Delta C_{A}}$
$\Rightarrow\left\{\begin{array}{c}\text { suppression for moderate } C_{S, P} \\ \text { enhancement for huge } \tan \beta \text { only }\end{array}\right.$

Fig. 3 of Logan \& Nierste, hep-ph/0004139:

For $M_{H^{ \pm}}=500 \mathrm{GeV}$ and $\tan \beta=50$: suppression by a factor of ~ 2. Enhancement possible only for $\tan \beta>60$.

Evaluation of the Wilson coefficients beyond the SM. Example 2: the MSSM.

For large $\tan \beta: \quad \mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \sim \frac{m_{b}^{2} m_{\mu}^{2}}{M_{A}^{4}} \tan ^{6} \beta$
K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84 (2000) 228.

Example of constraints on the MSSM parameter space:

Fig. 17 from A.G. Akeroyd, F. Mahmoudi, D. Martínez Santos, arXiv:1108.3018 (Aug 15th, 2011). Constraints from $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in the CMSSM parameter planes $\left(m_{\tilde{t}_{1}}\right.$, tan β) with the current LHC limits (upper plots) and for a hypothetical SM-like measurement $(3.5 \pm 0.3) \times 10^{-9}$ (lower plots). The allowed (green) points are in the background (left plots) or foreground (right plots).

Error budget for $B_{s} \rightarrow \mu^{+} \mu^{-}$in the SM

$$
\begin{aligned}
& \mathcal{B}\left(\boldsymbol{B}_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=\frac{G_{F}^{4} M_{W}^{4} m_{\mu}^{2} M_{B_{s}}}{8 \pi^{5}} \times
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{l}
(3.34 \pm \underbrace{0.21}_{6.3 \%}) \times 10^{-9} \text { for } f_{B_{s}}=225.0(4.0) \mathrm{MeV} \text { [HPQCD, arXiv:1110.4150] } \\
(3.86 \pm \underbrace{0.36}_{9.3 \%}) \times 10^{-9} \text { for } \boldsymbol{f}_{B_{s}}=242.0(9.5) \mathrm{MeV} \text { [FNAL/MILC, arXiv:1112.3051] }
\end{array}\right.
\end{aligned}
$$

The $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ corrections enhance the branching ratio by around $+2.2 \%$ when $\overline{\boldsymbol{m}}_{t}\left(\overline{\boldsymbol{m}}_{t}\right)$ is used at the leading order. G. Buchalla and A.J. Buras, Nucl. Phys. B 400 (1993) 225,

MM and J. Urban, Phys. Lett. B 451 (1999) 161,
G. Buchalla and A.J. Buras, Nucl. Phys. B 548 (1999) 309.

Logarithmically $\left(\ln \left(m_{t}^{2} / m_{b}^{2}\right)\right)$ enhanced electromagnetic corrections and the known electroweak corrections suppress the branching ratio by around -1.7%.
G. Buchalla, A. J. Buras, Phys. Rev. D 57 (1998) 216,
C. Bobeth, P. Gambino, M. Gorbahn, U. Haisch, JHEP 0404 (2004) 071,
T. Huber, E. Lunghi, MM, D. Wyler, Nucl. Phys. B 740 (2006) 105.

Another observable:
 (with different NP sensitivity)
 $$
\frac{\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{B_{s}} \tau_{B_{s}}}
$$

A. J. Buras, Phys. Lett. B 566 (2003) 115..

Summary of SM predictions for all the $B_{q} \rightarrow l^{+} l^{-}$decays:

[arXiv:0801.1833, WG2 report, "Flavor in the Era of the LHC"]

$$
\begin{aligned}
\mathcal{B}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right) & =(8.20 \pm 0.31) \cdot 10^{-7} \times \frac{\tau_{B_{s}}}{1.527 \mathrm{ps}}\left[\frac{\left|V_{t s}\right|}{0.0408}\right]^{2}\left[\frac{f_{B_{s}}}{240 \mathrm{MeV}}\right]^{2} \\
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) & =(3.86 \pm 0.15) \cdot 10^{-9} \times \frac{\tau_{B_{s}}}{1.527 \mathrm{ps}}\left[\frac{\left|V_{t s}\right|}{0.0408}\right]^{2}\left[\frac{f_{B_{s}}}{240 \mathrm{MeV}}\right]^{2} \\
\mathcal{B}\left(B_{s} \rightarrow e^{+} e^{-}\right) & =(9.05 \pm 0.34) \cdot 10^{-14} \times \frac{\tau_{B_{s}}}{1.527 \mathrm{ps}}\left[\frac{\left|V_{t s}\right|}{0.0408}\right]^{2}\left[\frac{f_{B_{s}}}{240 \mathrm{MeV}}\right]^{2} \\
\mathcal{B}\left(B_{d} \rightarrow \tau^{+} \tau^{-}\right) & =(2.23 \pm 0.08) \cdot 10^{-8} \times \frac{\tau_{B_{d}}}{1.527 \mathbf{p s}}\left[\frac{\left|V_{t d}\right|}{0.0082}\right]^{2}\left[\frac{f_{B_{d}}}{200 \mathrm{MeV}}\right]^{2} \\
\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right) & =(1.06 \pm 0.04) \cdot 10^{-10} \times \frac{\tau_{B_{d}}}{1.527 \mathbf{~ p s}}\left[\frac{\left|V_{t d}\right|}{0.0082}\right]^{2}\left[\frac{f_{B_{d}}}{200 \mathrm{MeV}}\right]^{2} \\
\mathcal{B}\left(B_{d} \rightarrow e^{+} e^{-}\right) & =(2.49 \pm 0.09) \cdot 10^{-15} \times \frac{\tau_{B_{d}}}{1.527 \mathrm{ps}}\left[\frac{\left|V_{t d}\right|}{0.0082}\right]^{2}\left[\frac{f_{B_{d}}}{200 \mathrm{MeV}}\right]^{2}
\end{aligned}
$$

The exp. 90% CL bounds are above the SM predictions by factors of
 respectively.

What other rare B decays are interesting?

Scenario "A" (Attractive or Arbitrary)

Generic Flavour Violation (GFV) in interactions of new particles with the SM ones.

- Large deviations from the SM values of the Wilson coefficients possible.
- Observable new physics effects despite QCD-induced theory uncertainties in many FCNC decays of the B meson (penguin-induced exclusive hadronic decays, $B \rightarrow K^{*} \gamma, B \rightarrow K^{(*)} l^{+} l^{-}$, etc.).
- Interesting constraints from branching ratios, angular distributions and various asymmetries.

Scenario "B"(Boring or Beautiful)

Quite heavy new particles and Minimal Flavour Violation (MFV)

- Only mild deviations of the Wilson coefficients from their SM values expected.
- CP-asymmetries unaffected.
- Precise measurements needed. \Rightarrow Not too small rates welcome. $\Rightarrow b \longrightarrow s$ preferred over $b \longrightarrow d$.
- Precise TH predictions in the SM case needed \Rightarrow Inclusive rather than exclusive hadronic final states welcome.
- Suppression in the SM due to parameters other than CKM angles welcome.
- Apart from $B \rightarrow l^{+} l^{-}$, the inclusive decay $\bar{B} \longrightarrow X_{s} \gamma$ is of main interest. Other inclusive decays like $\bar{B} \rightarrow X_{s} \nu \bar{\nu}, \quad \bar{B} \rightarrow X_{s} l^{+} l^{-}$are unsuppressed in the SM, but still deserve consideration.
- Exclusive observables (asymmetries) may still be useful to resolve discrete ambiguities (e.g. sign of the $b \longrightarrow s \gamma$ amplitude).

4. The $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum and CP asymmetry

4a. Photon spectrum and cuts
4b. Non-perturbative uncertainties in the decay rate
4c. Isospin asymmetry
4d. Direct CP asymmetry

Information on electroweak-scale physics in the $b \rightarrow s \gamma$ transition is encoded in an effective low-energy local interaction:

$$
b \in \bar{B} \equiv\left(\bar{B}^{0} \text { or } B^{-}\right)
$$

The inclusive $\bar{B} \rightarrow X_{s} \gamma$ decay rate is well approximated by the corresponding perturbative decay rate of the b-quark:

$$
\Gamma\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>E_{0}}=\Gamma\left(b \rightarrow X_{S}^{p} \gamma\right)_{E_{\gamma}>E_{0}}+\left(\begin{array}{c}
\text { non-perturbative effects } \\
(2 \pm 5) \% \\
\text { Benzke et al., arXiv:1003.5012 }
\end{array}\right)
$$

provided E_{0} is large ($\boldsymbol{E}_{0} \sim m_{b} / 2$)
but not too close to the endpoint ($m_{b}-2 E_{0} \gg \Lambda_{\mathrm{QCD}}$).
Conventionally, $E_{0}=1.6 \mathrm{GeV} \simeq m_{b} / 3$ is chosen.

Results of the SM calculations:

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{S} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}= \begin{cases}(3.15 \pm 0.23) \times 10^{-4}, & \begin{array}{l}
\text { MM et al., hep-ph/0609232, } \\
\text { using the 1S scheme. }
\end{array} \\
(3.26 \pm 0.24) \times 10^{-4}, & \begin{array}{l}
\text { following the kinetic scheme analysis } \\
\text { of P. Gambino and P. Giordano } \\
\text { in arXiv:0805.0271. }
\end{array}\end{cases}
$$

Contributions to the total TH uncertainty (summed in quadrature):
5% non-perturbative, $\quad 3 \% m_{c}$-interpolation ambiguity at the NNLO (to be reduced soon),
3% higher order $\mathcal{O}\left(\alpha_{s}^{3}\right), \quad 3 \%$ parametric $\left(\alpha_{s}\left(M_{Z}\right), \mathcal{B}_{\text {semileptonic }}^{\exp }, m_{c} \& C, \ldots\right)$.

$$
\begin{array}{lll}
2.0 \% & 1.6 \% & 1.1 \% \text { (1S) } \\
& & 2.5 \% \text { (kin) }
\end{array}
$$

Experimental world averages:

$\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}^{\mathrm{EXP}}= \begin{cases}(3.55 \pm 0.24 \pm 0.09) \times 10^{-4}, & {[\text { HFAG, arXiv:1010.1589] },} \\ (3.50 \pm 0.17) \times 10^{-4}, & \text { [Artuso, Barberio, Stone }, \\ \text { arXiv:0902.3743]. }\end{cases}$

Experiment agrees with the $\mathbf{S M}$ at the $\sim 1.2 \sigma$ level. Uncertainties: \quad TH $\sim 7 \%, \quad \operatorname{EXP} \sim 7 \%$.

The HFAG average includes the following measurements:

Reference	Method	\# of $B \bar{B}$	$E_{0}[\mathrm{GeV}]$	$\mathcal{B} \times 10^{4}$ at E_{0}
CLEO [PRL 87 (2001) 251807]	inclusive	9.70×10^{6}	2.0	$2.94 \pm 0.41 \pm 0.26$
BABAR [PRL 97 (2006) 171803]	inclusive	8.85×10^{7}	$\begin{aligned} & 1.9 \\ & 2.0 \\ & 2.1 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 3.67 \pm 0.29 \pm 0.34 \pm 0.29 \\ & 3.41 \pm 0.27 \pm 0.29 \pm 0.23 \\ & 2.97 \pm 0.24 \pm 0.25 \pm 0.17 \\ & 2.42 \pm 0.21 \pm 0.20 \pm 0.13 \end{aligned}$
BELLE [PRL 103 (2009) 241801]	inclusive	6.57×10^{8}	$\begin{aligned} & 1.7 \\ & 1.8 \\ & 1.9 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.45 \pm 0.15 \pm 0.40 \\ & 3.36 \pm 0.13 \pm 0.25 \\ & 3.21 \pm 0.11 \pm 0.16 \\ & 3.02 \pm 0.10 \pm 0.11 \end{aligned}$
BABAR [PRD 77 (2008) 051103]	inclusive with a hadronic tag (hadronic decay of the recoiling $B(\bar{B})$)	2.32×10^{8} which gives 6.8×10^{5} tagged events	$\begin{array}{\|l\|} \hline 1.9 \\ 2.0 \\ 2.1 \\ 2.2 \\ 2.3 \\ \hline \end{array}$	$\begin{aligned} & 3.66 \pm 0.85 \pm 0.60 \\ & 3.39 \pm 0.64 \pm 0.47 \\ & 2.78 \pm 0.48 \pm 0.35 \\ & 2.48 \pm 0.38 \pm 0.27 \\ & 2.07 \pm 0.30 \pm 0.20 \\ & \hline \end{aligned}$
BABAR [PRD 72 (2005) 052004]	semi-inclusive	8.89×10^{7}	1.9	$3.27 \pm 0.18_{-0.40-0.09}^{+0.55+0.04}$
BELLE [PLB 511 (2001) 151]	semi-inclusive	6.07×10^{6}	?	$3.36 \pm 0.53 \pm 0.42_{-0.54}^{+0.50}$

The "raw" photon energy spectra in the inclusive measurements

The peaks are centered around

$$
\frac{1}{2} m_{b} \simeq 2.35 \mathrm{GeV}
$$

which corresponds to a two-body $b \rightarrow s \gamma$ decay.
Broadening is due to (mainly):

- perturbative gluon bremsstrahlung,
- motion of the b quark inside the \bar{B} meson,
- motion of the \bar{B} meson in the $\Upsilon(4 S)$ frame.

Comparison of the inclusive measurements of $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)$ by CLEO, BELLE and BABAR for each E_{0} separately

Averages for each \boldsymbol{E}_{0} extrapolated to $E_{0}=1.6 \mathrm{GeV}$ using the HFAG factors

The HFAG factors $\left\{\begin{array}{lccccc}\hline \hline \text { Scheme } & E_{\gamma}<1.7 & E_{\gamma}<1.8 & E_{\gamma}<1.9 & E_{\gamma}<2.0 & E_{\gamma}<2.242 \\ \hline \text { Kinetic } & 0.986 \pm 0.001 & 0.968 \pm 0.002 & 0.939 \pm 0.005 & 0.903 \pm 0.009 & 0.656 \pm 0.031 \\ \text { Neubert SF } & 0.982 \pm 0.002 & 0.962 \pm 0.004 & 0.930 \pm 0.008 & 0.888 \pm 0.014 & 0.665 \pm 0.035 \\ \text { Kagan-Neubert } & 0.988 \pm 0.002 & 0.970 \pm 0.005 & 0.940 \pm 0.009 & 0.892 \pm 0.014 & 0.643 \pm 0.033 \\ \hline \text { Average } & 0.985 \pm 0.004 & 0.967 \pm 0.006 & 0.936 \pm 0.010 & 0.894 \pm 0.016 & 0.655 \pm 0.037 \\ \hline\end{array}\right.$

- Why do we need to extrapolate to lower E_{0} ?
- Are the HFAG factors trustworthy?

Decoupling of $W, Z, t, H^{0} \Rightarrow$ effective weak interaction Lagrangian:

$$
L_{\text {weak }} \sim \Sigma C_{i}\left(\mu_{b}\right) Q_{i}
$$

8 operators matter in the SM when the higher-order EW and/or CKM-suppressed effects are neglected:

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\left|C_{7}\right|^{2} \Gamma_{77}\left(E_{0}\right)+(\text { other })
$$

Optical theorem:
$\frac{d \Gamma_{77}}{d E_{\gamma}} \sim \operatorname{Im}\left\{{\underset{\sim}{\bar{B}}}_{\substack{\alpha}}^{\sim}\right.$

Integrating the amplitude \boldsymbol{A} over \boldsymbol{E}_{γ} :

OPE on
the ring \Rightarrow Non-perturbative corrections to $\Gamma_{77}\left(\boldsymbol{E}_{0}\right)$ form a series in $\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}$ and α_{s} that begins with

$$
\frac{\mu_{\pi}^{2}}{m_{b}^{2}}, \frac{\mu_{G}^{2}}{m_{b}^{2}}, \frac{\rho_{D}^{3}}{m_{b}^{3}}, \frac{\rho_{L S}^{3}}{m_{b}^{3}}, \ldots ; \frac{\alpha_{s} \mu_{\pi}^{2}}{\left(m_{b}-2 E_{0}\right)^{2}}, \frac{\alpha_{s} \mu_{G}^{2}}{m_{b}\left(m_{b}-2 E_{0}\right)} ; \ldots,
$$

where $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ are extracted from the semileptonic $\bar{B} \longrightarrow X_{c} e \bar{\nu}_{\text {spectra }}$ and the $\boldsymbol{B}-\boldsymbol{B}^{\star}$ mass difference.

The $\mathcal{O}\left(\frac{\alpha_{s} \mu_{\pi}^{2}}{\left(m_{b}-2 E_{0}\right)^{2}}\right)$ and $\mathcal{O}\left(\frac{\alpha_{s} \mu_{G}^{2}}{m_{b}\left(m_{b}-2 E_{0}\right)}\right)$ corrections
[T. Ewerth, P. Gambino and S. Nandi, arXiv:0911.2175]

$$
\begin{aligned}
\Gamma_{77}\left(\boldsymbol{E}_{0}\right)=\Gamma_{77}^{\text {tree }}\{1+(\text { pert. corrections }) & -\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}\left[1+\frac{\alpha_{s}}{\pi}\left(f_{1}\left(\boldsymbol{E}_{0}\right)-\frac{4}{3} \ln \frac{\mu}{m_{b}}\right)\right] \\
& \left.-\frac{3 \mu_{G}^{2}(\mu)}{2 m_{b}^{2}}\left[1+\frac{\alpha_{s}}{\pi}\left(f_{2}\left(\boldsymbol{E}_{0}\right)+\frac{1}{6} \ln \frac{\mu}{m_{b}}\right)\right]\right\}
\end{aligned}
$$

When $\left(m_{b}-2 E_{0}\right) \sim \Lambda \equiv \Lambda_{\mathrm{QCD}}, \quad$ no OPE can be applied.

Local operators \longrightarrow Non-local operators

Non-perturbative parameters \longrightarrow Non-perturbative functions

$$
\frac{d}{d E_{\gamma}} \Gamma_{77}=N \underset{\text { pert. }}{\boldsymbol{H}\left(E_{\gamma}\right)} \int_{0}^{M_{B}-2 E_{\gamma}} d k \underset{\text { pert. }}{P}\left(M_{B}-2 E_{\gamma}-k\right) \underset{\text { non-pert. }}{F(k)}+\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)
$$

Photon spectra from models of $\boldsymbol{F}(\boldsymbol{k})$ [Ligeti, Stewart, Tackmann, arXiv:0807.1926]

The function $F(k)$ is:

- perturbatively related to the standard shape function $S(\omega)$,
- exponentially suppressed for $k \gg \Lambda$,
- positive definite,
- constrained by measured moments of the $\bar{B} \rightarrow X_{c} e \bar{\nu}$ spectrum (local OPE),
- constrained by measured properties of the $\bar{B} \rightarrow X_{u} e \bar{\nu}$ and $\bar{B} \rightarrow X_{s} \gamma$ spectra (not imposed in the plot).

Upgrading the HFAG factors by fitting $F(k)$ to data:

- The SIMBA Collaboration [arXiv:1101.3310] (work in progress) $F(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{\infty} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}, \quad f_{n}-$ basis functions. Truncate and fit.
- Another way: $F(k)=A(k) B(k)$ and use the SIMBA approach for $B(k)$. perfect fit

Why do we need to upgrade the HFAG factors?

- The old models (Kagan-Neubert 1998, ...) are not generic enough (too few parameters).
- Inclusion of $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$ effects and and taking other operators $\left(Q_{i} \neq Q_{7}\right)$ into account is necessary [Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

What about just fitting C_{7} without extrapolation to any particular \boldsymbol{E}_{0} ?

- Fine, but measurements at low E_{0} (even less precise) are still going to be crucial for constraining the parameter space.
- The fits are going to give the extrapolation factors anyway.

Publishing them is necessary for cross-checks/upgrades by other groups.

Non-perturbative effects in the presence of other operators $\left(Q_{i} \neq Q_{7}\right)$
[Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

$$
\frac{d}{d E_{\gamma}} \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\left(\Gamma_{77} \text {-like term }\right)+\tilde{N} E_{\gamma}^{3} \sum_{i \leq j} \operatorname{Re}\left(C_{i}^{*} C_{j}\right) F_{i j}\left(E_{\gamma}\right)
$$

Remarks:

- The SCET approach is valid for large \boldsymbol{E}_{γ} only. It is fine for $E_{\gamma}>E_{0} \sim \frac{1}{3} m_{b} \simeq 1.6 \mathrm{GeV}$. Lower cutoffs are academic anyway.
- For such E_{0}, non-perturbative effects in the integrated decay rate are estimated to remain within 5%. They scale like:
- $\frac{\Lambda^{2}}{m_{b}^{2}}, \frac{\Lambda^{2}}{m_{c}^{2}}$ (known),
- $\frac{\Lambda}{m_{b}} \frac{V_{u s}^{*} V_{u b}}{V_{t s}^{*} V_{t b}}$ (negligible),

- $\frac{\Lambda}{m_{b}}, \frac{\Lambda^{2}}{m_{b}^{2}}, \alpha_{s} \frac{\Lambda}{m_{b}}$ but suppressed by tails of subleading shape functions (" 27 "),
- $\alpha_{s} \frac{\Lambda}{m_{b}}$ to be constrained by future measurements of the isospin asymmetry ("78"),
- $\alpha_{s} \frac{\Lambda}{m_{b}}$ but suppressed by $Q_{d}^{2}=\frac{1}{9} \quad$ (" 88 ").
- Extrapolation factors? Tails of subleading functions are less important for them.

Importance of the isospin asymmetry

A hard gluon scatters on the valence quark or a "sea" quark and produces an energetic photon. The quark that undergoes this Compton-like scattering is assumed to remain soft in the \bar{B}-meson rest frame to ensure effective interference with the leading "hard" amplitude. Without interference the contribution would be negligible $\left(\mathcal{O}\left(\alpha_{s}^{2} \Lambda^{2} / m_{b}^{2}\right)\right)$.
Suppression by Λ can be understood as originating from dilution of the target (size of the \bar{B}-meson $\sim \Lambda^{-1}$).
A rough estimate using vacuum insertion approximation gives

$$
\Delta \Gamma / \Gamma \in[-2.8 \%,-0.3 \%] \quad\left(\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right)\right)
$$

[Lee, Neubert, Paz, hep-ph/0609224]
[Benzke, Lee, Neubert, Paz, arXiv:1003.5012]

However:

1. Contribution to the interference from scattering on the "sea" quarks vanishes in the $S U(3)_{\text {flavour limit because }} Q_{u}+Q_{d}+Q_{s}=0$.
2. If the valence quark dominates, then the isospin-averaged $\Delta \Gamma / \Gamma$ is given by:

$$
\frac{\Delta \Gamma}{\Gamma} \simeq \frac{Q_{d}+Q_{u}}{Q_{d}-Q_{u}} \Delta_{0-}=\left(+0.2 \pm 1.9_{\mathrm{stat}} \pm 0.3_{\mathrm{sys}} \pm 0.8_{\mathrm{ident}}\right) \%
$$

using the BABAR semi-inclusive measurement (hep-ex/0508004) of the isospin asymmetry

$$
\Delta_{0-}=\left[\Gamma\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)-\Gamma\left(B^{-} \rightarrow X_{s} \gamma\right)\right] /\left[\Gamma\left(\bar{B}^{0} \rightarrow X_{s} \gamma\right)+\Gamma\left(B^{-} \rightarrow X_{s} \gamma\right)\right]
$$

for $\boldsymbol{E}_{\gamma}>1.9 \mathrm{GeV}$.
Quark-to-photon conversion gives a soft s-quark and poorly interferes with the "hard" $b \rightarrow s \gamma g$ amplitude.

The direct CP asymmetry

$$
\boldsymbol{A}_{\boldsymbol{X}_{s} \gamma}=\frac{\Gamma\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)-\Gamma\left(B \rightarrow \boldsymbol{X}_{\bar{s} \gamma}\right)}{\Gamma\left(\bar{B} \rightarrow \boldsymbol{X}_{s} \gamma\right)+\Gamma\left(B \rightarrow \boldsymbol{X}_{\bar{s}} \gamma\right)}
$$

Semi inclusive measurements $\Rightarrow A_{X_{s} \gamma}^{\exp }=-(1.2 \pm 2.8) \% \quad$ (HFAG average)
SM estimate [Benzke, Lee, Neubert, Paz, arXiv:1012.3167]:
$A_{X_{s} \gamma}^{\mathrm{SM}} \simeq \operatorname{Im}\left(\frac{V_{u s}^{*} V_{u b}}{V_{t s}^{*} V_{t b}}\right) \pi\left|\frac{C_{1}^{\text {their }}}{C_{7}}\right|\left[\frac{\tilde{\Lambda}_{17}^{u}-\tilde{\Lambda}_{17}^{c}}{m_{b}}+\frac{40 \alpha_{s}}{9 \pi} \frac{m_{c}^{2}}{m_{b}^{2}}\left(1-\frac{2}{5} \ln \frac{m_{b}}{m_{c}}+\frac{4}{5} \ln ^{2} \frac{m_{b}}{m_{c}}-\frac{\pi^{2}}{15}\right)\right]$
$\simeq\left(1.15 \frac{\tilde{\Lambda}_{17}^{u}-\tilde{\Lambda}_{17}^{c}}{300 \mathrm{MeV}}+\mathbf{0 . 7 1}\right) \% \in[-\mathbf{0 . 6 \%},+\mathbf{2 . 8} \%] \quad$ using $\left\{\begin{array}{c}-330 \mathrm{MeV}<\tilde{\Lambda}_{17}^{u}<+525 \mathrm{MeV} \\ -9 \mathrm{MeV}<\tilde{\Lambda}_{17}^{u}<+11 \mathrm{MeV}\end{array}\right.$
Despite the uncertainties, $\boldsymbol{A}_{X_{s} \gamma}$ provides constraints on models with non-minimal flavour violation. Such models are also constrained by:
$A_{X_{(s+d)} \gamma}=\frac{\Gamma\left(\bar{B} \rightarrow X_{(s+d)} \gamma\right)-\Gamma\left(B \rightarrow X_{(\bar{s}+\bar{d})} \gamma\right)}{\Gamma\left(\bar{B} \rightarrow X_{(s+d)} \gamma\right)+\Gamma\left(B \rightarrow X_{(\bar{s}+\bar{d})} \gamma\right)} \quad\left(A_{X_{(s+d)} \gamma}^{\mathrm{SM}} \simeq 0\right)$

The following vertices Q_{i} matter for $b \rightarrow s \gamma$ and $b \rightarrow s l^{+} l^{-}$: (SM - only the red ones)
$Q_{1,2}=\underset{b_{\mathrm{L}}}{\mathrm{b}_{\mathrm{L}}}$.
$Q_{3,4,5,6}=\underset{b_{\mathrm{L}}}{\substack{b_{L}}}$

$$
\left.Q_{8}=\hat{\mathrm{b}}_{\mathrm{R}}\right\}^{\mathrm{g}_{\mathrm{g}}} \mathrm{~s}_{\mathrm{L}}
$$

$$
Q_{9}=\stackrel{\lambda}{\mathrm{b}_{\mathrm{t}}} \stackrel{\gamma_{\mu} / 1}{\mathrm{~s}_{\mathrm{L}}}
$$

$$
Q_{10}=\stackrel{\hat{b}_{\mathrm{L}} \cdot \gamma_{\mu} \gamma_{\mathrm{J}} / \mathrm{s}_{\mathrm{L}}}{1}
$$

$$
Q_{S}=\stackrel{\mathrm{b}_{\mathrm{R}}}{\mathrm{~b}_{\mathrm{R}}} \cdot \frac{1}{\mathrm{~s}_{\mathrm{L}}}
$$

$$
Q_{P}=\stackrel{\mathrm{b}_{\mathrm{R}}}{\gamma_{\mathrm{s}}} / \mathrm{s}_{\mathrm{s}_{\mathrm{L}}}^{1}
$$

$$
Q_{T}=\stackrel{\mathrm{b}_{\mathrm{R}}}{\substack{\sigma_{\mu \nu}}} / \mathrm{s}_{\mathrm{L}}
$$

$Q_{7}^{\prime}=\stackrel{b}{b}^{b_{n}} \int_{\mathrm{s}_{\mathrm{R}}}^{y}$
$Q_{8}^{\prime}=b_{h_{L}}^{\xi^{g}} \varepsilon_{s_{k}}$

$$
Q_{9}^{\prime}=\stackrel{\lambda}{\mathrm{b}_{\mathrm{R}}} \stackrel{\gamma_{\mu}}{\gamma_{\mathrm{R}}}
$$

$$
Q_{10}^{\prime}=\stackrel{i \gamma_{\mathrm{R}} \gamma_{\mathrm{R}} /<\mathrm{s}_{\mathrm{R}}}{\mathrm{~s}_{\mathrm{R}}}
$$

$$
Q_{S}^{\prime}=\stackrel{b_{\mathrm{t}}}{\mathrm{~b}_{\mathrm{L}}} \cdot \mathrm{~s}_{\mathrm{s}}
$$

$$
Q_{P}^{\prime}=\stackrel{\mathrm{b}_{\mathrm{t}}}{7_{\mathrm{s}}} \cdot \mathrm{~s}_{\mathrm{s}_{\mathrm{R}}}^{i}
$$

$$
Q_{T}^{\prime}={\stackrel{i}{\mathrm{~b}_{\mathrm{L}}} \sigma_{\mu \nu} / \mathrm{s}_{\mathrm{R}}}^{l}
$$

Assumption: no relevant NP effects in the 4-quark operators.

Dilepton mass spectrum in $\bar{B} \rightarrow X_{s} l^{+} l^{-} \quad(l=e$ or $\mu)$

Problem: $\mathcal{B}(B \rightarrow J / \psi X) \simeq 1.1 \times 10^{-2}$

$$
\mathcal{B}\left(J / \psi \rightarrow l^{+} l^{-}\right) \quad \simeq 5.9 \times 10^{-2}
$$

$$
\mathcal{B}\left(J / \psi \rightarrow \boldsymbol{l}^{+} \boldsymbol{l}^{-} \boldsymbol{X}\right)<? . ? \times 10^{-?} \leftarrow \text { Even } \mathcal{O}\left(10^{-4}\right) \text { matters! }
$$

$$
\mathcal{B}(J / \psi \rightarrow \gamma X) \quad \simeq 8.8 \times 10^{-2} \quad\left(\text { CLEO' }^{\prime} 08, \text { with and error } 5 \times 10^{-3}\right)
$$

Could we get any experimental hints from exclusive decays at the LHCb? For instance, $B^{+} \rightarrow K^{+} J / \psi$ followed by $J / \psi \rightarrow l^{+} l^{-}\left(\pi^{0}\right.$ or $\left.\pi^{+} \pi^{-}\right)$? $\mathcal{B}=(1.014 \pm 0.034) \times 10^{-3}$

Inclusive decay rates and the sign of C_{7}

$$
\frac{d \Gamma\left(\bar{B} \rightarrow X_{s} l^{+} l^{-}\right)}{d \hat{\mathbf{s}}}=\frac{G_{F}^{2} m_{b, \mathrm{pole}}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}\left(\frac{\alpha_{\mathrm{em}}}{4 \pi}\right)^{2}(1-\hat{\mathbf{s}})^{2} \times
$$

$$
\left(\hat{s}=\frac{q_{l+l^{-}}^{2}}{m_{b}^{2}}\right)
$$

$$
\left\{(1+2 \hat{\mathbf{s}})\left(\left|\mathbf{C}_{9}^{\mathrm{eff}}(\hat{\mathbf{s}})\right|^{2}+\left|\mathbf{C}_{10}^{\mathrm{eff}}(\hat{\mathbf{s}})\right|^{2}\right)+\left(4+\frac{8}{\hat{\mathbf{s}}}\right)\left|\mathbf{C}_{7}^{\mathrm{eff}}(\hat{\mathbf{s}})\right|^{2}+12 \operatorname{Re}\left(\mathbf{C}_{\boldsymbol{7}}^{\mathrm{eff}}(\hat{\mathbf{s}}) \mathbf{C}_{9}^{\mathrm{eff} *}(\hat{\mathbf{s}})\right)\right\}+\mathbb{R}_{1}
$$

$$
\Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b, \text { pole }}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{8 \pi^{3}} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left|\mathbf{C}_{7}^{\mathrm{eff}}(\hat{\mathbf{s}}=0)\right|^{2}+\mathbb{R}_{2}
$$

are conveniently expressed in terms of the so-called effective coefficients
$C_{i}^{\mathrm{eff}}(\hat{\mathbf{s}})=C_{i}\left(\mu_{\mathbf{b}}\right)+($ loop corrections $)(\hat{\mathbf{s}})$.
The quantities R_{i} stand for small bremsstrahlung contributions and for the non-perturbative corrections.

$$
\operatorname{sgn} \mathbf{C}_{\mathbf{7}}\left(\mu_{b}\right)=(\text { "sign of the } b \rightarrow s \gamma \text { amplitude" })
$$

This sign matters for the $\bar{B} \rightarrow X_{s} l^{+} l^{-}$rate and (even more) for the forward-backward asymmetry:

$$
A_{\mathrm{FB}}=\int_{-1}^{1} d y \frac{d^{2} \Gamma\left(\bar{B} \rightarrow X_{s} l^{+} l^{-}\right)}{d \hat{\mathbf{s}} d y} \operatorname{sgn} y \sim(1-\hat{\mathbf{s}})^{2} \operatorname{Re}\left[\mathbf{C}_{10}^{\mathrm{eff} *}(\hat{\mathbf{s}})\left(\hat{\mathbf{s}} \mathbf{C}_{9}^{\mathrm{eff}}(\hat{\mathbf{s}})+2 \mathbf{C}_{7}^{\mathrm{eff}}(\hat{\mathbf{s}})\right)\right]+\mathbb{R}_{3}
$$

where $y=\cos \theta_{l}$ and θ_{l} is the angle between the momenta of \bar{B} and l^{+}in the dilepton rest frame. Forward-backward asymmetries for the exclusive $\bar{B} \rightarrow K^{(\star)} l^{+} l^{-}$modes are defined analogously.

Recent "global fits" to exclusive and inclusive $b \rightarrow s$ observables
[1] S. Descotes-Genon, D. Ghosh, J. Matias and M. Ramon, JHEP 1106 (2011) 099 [arXiv:1104.3342]
[2] W. Altmannshofer, P. Paradisi, D. M. Straub, arXiv:1111.1257
Constraints from $\mathcal{B}\left(\bar{B} \longrightarrow \boldsymbol{X}_{s} \gamma\right), \mathcal{B}\left(\bar{B} \rightarrow \boldsymbol{X}_{s} l^{+} l^{-}\right)[1,2], \mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)[2]$ and $\bar{B} \longrightarrow K^{*} \gamma: \quad S_{K^{*} \gamma}$ (mixing-induced CP asymmetry) [1,2], $\boldsymbol{A}_{\boldsymbol{I}}$ (isospin asymmetry) [1], $\bar{B} \rightarrow K^{*} l^{+} l^{-}: \quad$ angular observables $\left\{A_{F B}, F_{L}\right\}[1,2], A_{T}^{(2)}[1],\left\{S_{k}, A_{k}\right\}$ [2].
Sample bounds on the Wilson coefficients [1]:

Summary

- Experimental bounds on $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$are quickly approaching the SM value. Given the new-physics sensitivity of this mode, it is going to remain the highlight of rare B decays for a while.
- For the $\bar{B} \rightarrow X_{s} \gamma$ branching ratio and moments of the photon spectrum, measurements at all the photon energy cutoffs $E_{0} \in[1.6,2.1] \mathrm{GeV}$ are relevant (with correlation matrices) for getting constraints on C_{7}. A coordinated effort of theorists and experimentalists can lead to significant reduction of TH/EXP errors and making them reliable.
- The direct CP asymmetry $A_{X_{s} \gamma}$ in the SM is likely to be dominated by unknown non-perturbative contributions. Nevertheless, it can still provide constraints on non-MFV models, in parallel to $\boldsymbol{A}_{X_{(s+d)}}$.
- Processes generated by the quark-level $b \rightarrow s l^{+} l^{-}$transition provide us with information on a large number of Wilson coefficients, and can be used to resolve discrete ambiguities.

BACKUP SLIDES

Perturbative evaluation of $\Gamma\left(b \rightarrow X_{s}^{\mathrm{p}} \gamma\right)$ at $\mu_{b} \sim \frac{m_{b}}{2}$.

$\Gamma\left(b \rightarrow X_{S}^{\mathrm{p}} \gamma\right)_{E_{\gamma}>E_{0}}=\frac{G_{F}^{2} m_{b}^{5} \alpha_{\mathrm{e}}}{32 \pi^{4}}\left|V_{t s}^{*} V_{t b}\right|^{2} \sum_{i, j=1}^{8} C_{i}\left(\mu_{b}\right) C_{j}\left(\mu_{b}\right) G_{i j}\left(E_{0}, \mu_{b}\right)$
$\mathrm{LO}: G_{77}=1 \mid \mathrm{b}$
Other LO are small, e.g.,

[Kamiński, Poradziński, MM,
in preparation]

NLO: 1996: Quasi-complete $G_{i j} \quad\left\{\begin{array}{l}\text { [Greub, Hurth, Wyler, 1996] } \\ \text { [Ali, Greub, 1991-1995] }\end{array}\right.$
2002: Complete ${ }^{(*)} G_{i j} \quad\left\{\begin{array}{l}\text { [Buras, Czarnecki, Urban, MM, 2002] } \\ {[\text { Pott, 1995] }}\end{array}\right.$
${ }^{(*)} \mathbf{U p}$ to $b \longrightarrow s q \bar{q} \gamma$ channel contributions involving diagrams similar to the above LO one. They get suppressed by $\alpha_{s} C_{3,4,5,6}$ and phase-space for $E_{0} \sim m_{b} / 3$.

NNLO: We are still on the way to the quasi-complete case:
G_{77} is
fully known

$\left\{\begin{array}{l}\text { [Blokland et al., 2005] } \\ \text { [Melnikov, Mitov, 2005] } \\ \text { [Asatrian et al., 2006-2007] }\end{array}\right.$
G_{78} is fully known:

Two-particle cuts are known (just $|\mathrm{NLO}|^{2}$).

Three- and four-particle cuts are known in the BLM approximation only: [Ligeti, Luke, Manohar, Wise, 1999], [Ferroglia, Haisch, arXiv:1009.2144], [Poradziński, MM, arXiv:1009.5685]. NLO + (NNLO BLM) corrections are not big ($+3.8 \%$).

Example:

Evaluation of the ($n>2$)-particle cut contributions to G_{28} in the Brodsky-Lepage-Mackienzie (BLM) approximation ("naive nonabelianization", large- β_{0} approximation) [Poradziński, MM, arXiv:1009.5685]:

q - massless quark,
N_{q} - number of massless flavours (equals to 3 in practice because masses of u, d, s are neglected). Replacement in the final result:
$-\frac{2}{3} N_{q} \longrightarrow \beta_{0}=11-\frac{2}{3}\left(N_{q}+2\right)$.
The diagrams have been evaluated using the method of Smith and Voloshin [hep-ph/9405204].

Non-BLM contributions to $G_{i j}$ from quark loops on the gluon lines are quasi-completely known.
[Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].

The only important but still missing NNLO contribution to $G_{i j}$:

G_{27} : (and analogous G_{17})

The $m_{c} \gg m_{b} / 2$ limit is known [Steinhauser, MM, 2006]. The BLM approximation is known for arbitrary $m_{c}:\left\{\begin{array}{l}\text { [Bieri, Greub, Steinhauser, 2003], } \\ \text { [Ligeti, Luke, Manohar, Wise, 1999]. }\end{array}\right.$

The non-BLM correction to G_{27} has been interpolated in m_{c} assuming BLM in Γ at $m_{c}=0$.

Towards G_{27} at the NNLO for arbitrary m_{c}.

[M. Czakon, R.N. Lee, M. Steinhauser, A.V. Smirnov, V.A. Smirnov, MM] in progress.

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of four-loop two-scale scalar integrals with unitarity cuts.
2. Reduction to master integrals with the help of Integration By Parts (IBP).

Available C++ codes: FIRE [A.V. Smirnov, arXiv:0807.3243] (public in the Mathematica version only), REDUZE [C. Studerus, arXiv:0912.2546],
DiaGen/IdSolver [M. Czakon, unpublished (2004)].
The IBP for 2-particle cuts has just been completed
with the help of FIRE: ~ 0.5 TB RAM has been used ~ 1 month at CERN and KIT.
Number of master integrals: around 500.
3. Extending the set of master integrals I_{n} so that it closes under differentiation with respect to $z=m_{c}^{2} / m_{b}^{2}$. This way one obtains a system of differential equations

$$
\begin{equation*}
\frac{d}{d z} I_{n}=\Sigma_{k} w_{n k}(z, \epsilon) I_{k} \tag{*}
\end{equation*}
$$

where $w_{n k}$ are rational functions of their arguments.
4. Calculating boundary conditions for $(*)$ using automatized asymptotic expansions at $m_{c} \gg m_{b}$.
5. Calculating three-loop single-scale master integrals for the boundary conditions using dimensional recurrence relations [R.N. Lee, arXiv:0911.0252].
6. Solving the system (*) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack] along an ellipse in the complex z plane. Doing so along several different ellipses allows us to estimate the numerical error.

This algorithm has already been successfully applied for diagrams

 with (massless and massive) quark loops on the gluon lines where $18+47+38=103$ master integrals were present.[R. Boughezal, M. Czakon, T. Schutzmeier, arXiv:0707.3090]

Non-perturbative contributions from the photonic dipole operator alone (" 77 " term) are well controlled for $E_{0}=1.6 \mathrm{GeV}$:

The dominant non-perturbative uncertainty originates from the " 27 " interference term:

$\lambda_{2} \simeq 0.12 \mathrm{GeV}^{2}$
from $B-B^{*}$ mass splitting

The coefficients b_{n} decrease fast with n. [Voloshin, 1996], [Khodjamirian, Rückl, Stall, Wyler, 1997] [Grant, Morgan, Nussinov, Peccei, 1997]
[Ligeti, Randall, Wise, 1997], [Buchalla, Isidori, Rev, 1997]

New claims by Benzke, Lee, Neubert and Paz in arXiv:1003.5012:
One cannot really expand in $m_{b} \Lambda / m_{c}^{2}$. All such corrections should be treated as Λ / m_{b} ones and estimated using models of subleading shape functions. Dominant contributions to the estimated $\pm 5 \%$ non-perturbative uncertainty in \mathcal{B} are found this way, with the help of alternating-sign shape functions that undergo weaker suppression at large gluon momenta.

correction to the above

phase-space suppressed

Main worry in hep-ph/0609232, and reason for the
$\pm 5 \%$ non-perturbative uncertainty.

Goal: calculate the inclusive sum $\left.\Sigma_{X_{s}}\left|C_{7}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{7}\right| \bar{B}\right\rangle+C_{2}\left(\mu_{b}\right)\left\langle X_{s} \gamma\right| O_{2}|\bar{B}\rangle+\left.\ldots\right|^{2}$
The " 77 " term in this sum is purely "hard". It is related via the optical theorem to the imaginary part of the elastic forward scattering amplitude $\bar{B}(\vec{p}=0) \gamma(\vec{q}) \rightarrow \bar{B}(\vec{p}=0) \gamma(\vec{q})$:

When the photons are soft enough, $m_{X_{s}}^{2}=\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2} \Rightarrow$ Short-distance dominance \Rightarrow OPE. However, the $\bar{B} \rightarrow X_{s} \gamma$ photon spectrum is dominated by hard photons $E_{\gamma} \sim m_{b} / 2$.

Once $A\left(E_{\gamma}\right)$ is considered as a function of arbitrary complex E_{γ}, $\operatorname{Im} A$ turns out to be proportional to the discontinuity of A at the physical cut. Consequently,

$$
\int_{1 \mathrm{GeV}}^{E_{\gamma}^{\max }} d E_{\gamma} \operatorname{Im} A\left(E_{\gamma}\right) \sim \oint_{\text {circle }} d E_{\gamma} A\left(E_{\gamma}\right)
$$

Since the condition $\left|m_{B}\left(m_{B}-2 E_{\gamma}\right)\right| \gg \Lambda^{2}$ is fulfilled along the circle,
 the OPE coefficients can be calculated perturbatively, which gives $\left.A\left(E_{\gamma}\right)\right|_{\text {circle }} \simeq \sum_{j}\left[\frac{F_{\text {polynomial }}^{(j)}\left(2 E_{\gamma} / m_{b}\right)}{m_{b}^{n_{j}}\left(1-2 E_{\gamma} / m_{b}\right)^{k_{j}}}+\mathcal{O}\left(\alpha_{s}\left(\mu_{\text {hard }}\right)\right)\right]\langle\bar{B}(\vec{p}=0)| Q_{\text {local operator }}^{(j)}|\bar{B}(\vec{p}=0)\rangle$.
Thus, contributions from higher-dimensional operators are suppressed by powers of Λ / m_{b}.
At $\left(\Lambda / m_{b}\right)^{0}$:

$$
\langle\bar{B}(\vec{p})| \bar{b} \gamma^{\mu} b|\bar{B}(\vec{p})\rangle=2 p^{\mu} \quad \Rightarrow \quad \Gamma\left(\bar{B} \rightarrow X_{s} \gamma\right)=\Gamma\left(b \rightarrow X_{s}^{\text {parton }} \gamma\right)+\mathcal{O}\left(\Lambda / m_{b}\right)
$$

At $\left(\Lambda / m_{b}\right)^{1}$: Nothing! All the possible operators vanish by the equations of motion.
At $\left(\Lambda / m_{b}\right)^{2}: \quad\langle\bar{B}(\vec{p})| \bar{h} D^{\mu} D_{\mu} h|\bar{B}(\vec{p})\rangle=-2 m_{B} \lambda_{1}, \quad \lambda_{1}=(-0.27 \pm 0.04) \mathrm{GeV}^{2}$ from $\bar{B} \rightarrow X \ell^{-} \nu$ spectrum.

$$
\langle\bar{B}(\vec{p})| \bar{h} \sigma^{\mu \nu} G_{\mu \nu} h|\bar{B}(\vec{p})\rangle=6 m_{B} \lambda_{2}, \quad \lambda_{2} \simeq \frac{1}{4}\left(m_{B^{*}}^{2}-m_{B}^{2}\right) \simeq 0.12 \mathrm{GeV}^{2}
$$

The HQET heavy-quark field $h(x)$ is defined by $h(x)=\frac{1}{2}(1+\not \subset) b(x) \exp \left(i m_{b} v \cdot x\right)$ with $v=p / m_{B}$.

Energetic photon production in charmless decays of the \bar{B}-meson
$\left(E_{\gamma} \gtrsim \frac{m_{b}}{3} \simeq 1.6 \mathrm{GeV}\right.$)
[see MM, arXiv:0911.1651]
A. Without long-distance charm loops:

Dominant, well-controlled.

$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right), \quad(-1.6 \pm 1.2) \%$.
[Benzke, Lee, Neubert, Paz, 2010]
3. Collinear

$\sim-0.2 \%$ or $(+0.8 \pm 1.1) \%$.
[Kapustin,Ligeti,Politzer, 1995]
[Benzke, Lee, Neubert, Paz, 2010]
4. Annihilation $\left\{\begin{array}{r}6 \\ 6\end{array}\right.$ $(q \bar{q} \neq c \bar{c})$

Exp. $\pi^{0}, \eta, \eta^{\prime}, \omega$ subtracted.
Perturbatively $\sim 0.1 \%$.

B. With long-distance charm loops:

5. Soft

6. Annihilation of $c \bar{c}$ in a heavy $(\bar{c} s)(\bar{q} c)$ state
7. Boosted light $c \bar{c}$ state annihilation

Exp. J / ψ subtracted $(<1 \%)$.
Perturbatively (including hard): $\sim+3.6 \%$.

$$
\begin{array}{rr}
\mathcal{O}\left(\alpha_{s}(\Lambda / M)^{2}\right) & \mathcal{O}\left(\alpha_{s} \Lambda\right. \\
M & \sim 2 m_{c}, 2 E_{\gamma}, m_{b} .
\end{array}
$$

$$
\text { e.g. } \mathcal{B}\left[B^{-} \rightarrow D_{S J}(2457)^{-} D^{*}(2007)^{0}\right] \simeq 1.2 \% \text {, }
$$

$$
\mathcal{B}\left[B^{0} \rightarrow D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0} K^{-}\right] \simeq 1.2 \% .
$$

