

Epiphany 2012 Conference, Kracow

Introduction

Standard Model:

 CP violation in the quark sector described by a single weak phase
 in the CKM mixing matrix

•Time-dependent analyses of "golden" b→ccs transitions give: sin(2β_{ccs})=0.679 ±0.020 (HFAG, http://www.slac.stanford.edu/xorg/hfag/)

New Physics contributions may induce CPV effects which modify the SM expectations:

Look for possible CPV induced by New Physics in systems where:

SM CPV is expected to be approximately the same as in the "golden" transitions: • b → sqq (q=d,s) • b → sqq (q=d,s)	CPV is predicted to be ppressed: \Rightarrow sy: CPV ~ O(10 ⁻²) mixing: CPV ~ O(10 ⁻⁵ - 10 ⁻⁴) harm sector: CPV ~ O(10 ⁻⁴ -10 ⁻³) u sector: CPV ~ O(10 ⁻³)
---	---

Epiphany 2012 Conference, Kracow

b-sqq (q=d,s): Motivations

Standard Model:

 $\frac{\operatorname{Br}(\bar{B}^0(t)\to f) - \operatorname{Br}(B^0(t)\to f)}{\operatorname{Br}(\bar{B}^0(t)\to f) + \operatorname{Br}(B^0(t)\to f)} \equiv S_f \sin(\Delta m_B t) - C_f \cos(\Delta m_B t)$

•Time-dependent CP asymmetry of B⁰ decays into CP eigenstate *f* described in terms of **mixing-induced CPV (S_f) and**

direct CPV (C_{f}) parameters

 Amplitude dominated by a single weakphase term as in b->ccs:

$S_{f} \sim -\eta_{f} \sin(2\beta), C_{f} \sim 0;$

 $(\eta_f = +1(-1) \text{ for CP-even(odd) states})$

•"Effective" $sin(2\beta_{eff})$ could differ from

 $sin(2\beta_{ccs})$ due to Final State Interactions

& additional b →u tree diagrams

depending on decay mode (Beneke, Phys, Lett. B620, 143; Cheng et al., Phys. Rev. D72, 014006;

Li et al., Phys. Rev. D74, 094020) Epiphany 2012 Conference, Kracow

Beyond Standard Model:

•Amplitude dominated by diagrams sensitive to new heavy particles in the loop which can give large correction to β_{eff} or $C_f \neq 0$.

•Today:

 $B^{0} \rightarrow K^{0}_{s} K^{0}_{s} K^{0}_{s}$ (New BaBar result)

•Pure CP-even eigenstate,

theoretically & experimentally clean:

→ $sin(2\beta_{eff})-sin(2\beta_{ccs})=0.06$ with

negligible theory error;

 → Signal/Bkg~1.
 (Cheng, Chua, Soni, Phys, Rev D 72, 094003; Gershon, Hazumi, Phys. Lett. B 596, 163)

BaBar B⁰ $\rightarrow K^{0}_{s}K^{0}_{s}K^{0}_{s}(426 \text{ fb}^{-1})$

B⁰ reconstruction:

• $3K^{0}(\pi^{+}\pi^{-}) \& 2K^{0}(\pi^{+}\pi^{-}) K^{0}(\pi^{0}\pi^{0})$ modes selected with cuts on vertex quality, M($\pi^+\pi^-$), K⁰ flight length, E γ , e.m. shower shape, M($\gamma\gamma$) •Combinatorial BKG suppressed exploiting the angle between K⁰ flight direction and momentum •Signal selected by means of $\Delta E = E_B^* - E_{
m beam}^*$ & $m_{
m ES} = \sqrt{E_{
m beam}^{*2}} - \vec{p}_B^{*2}$ $(*=\Upsilon(4S)$ reference frame) Dominant BKG from Continuum suppressed by means of a Neural Signal m_ Continuum m Network (event shape, θ_{B} , $\theta_{B-Thrust}$) trained using off-resonance data •ε= 6.7% (3.1%) for 3K⁰ (π⁺π⁻) m_{ES} [GeV/c²] m_{ES} [GeV/c²] $(2K^{0}_{s}(\pi^{+}\pi^{-})K^{0}_{s}(\pi^{0}\pi^{0}))$ from a MC generated using results of Dalitz-Plot amplitude analysis on data Signal Δ Contin •BB BKG (<2%) included in the fit ∆E [GeV] ∆E [GeV]

Epiphany 2012 Conference, Kracow M. Margoni Universita` di Padova & INFN

BaBar B⁰ $\leftarrow K^{0}_{s}K^{0}_{s}K^{0}_{s}(426 \text{ fb}^{-1})_{arXiv:1111.3636}$

 $\Delta t = tB_{K_SK_SK_S} - tB_{TAG} = \Delta z/\beta \gamma c$

 $\frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \bigg\{ 1 + q_{\text{tag}} \frac{\Delta D_c}{2} \bigg\}$

 $\mathcal{R}_{sig}(\Delta t, \sigma_{\Delta t}),$

 $+q_{\rm tag}(D)_c Sin(\Delta m_d \Delta t) - Coos(\Delta m_d \Delta t) \Big]$

q_{TAG}=+1(-1) for

5

 $B_{TAC} = B^0(\overline{B^0})$

 $\mathcal{P}_{\mathrm{sig}}^{i}(\Delta t, \sigma_{\Delta t}; q_{\mathrm{tag}}, c) =$

Proper-time difference PDF described in terms of:

- CP parameters **S** & **C**
- Flavor \mathbf{q}_{TAG} of the second $B^0(B_{TAG})$ from charge, momentum & decay angle of the daughter tracks (6 different categories, with dilution D_c and difference ΔD_c between B^0 and $\overline{B^0}$)
- Δt resolution R_{sig} described by a sum of three Gaussians from MC

•Signal yield and CP parameters obtained by means of simultaneous unbinned extended maximum likelihood fit to $m_{_{ES}}$, ΔE , NN, Δt

- •Total PDF is the sum of Signal, Continuum and $B\overline{B}$ BKG contributions •Some m_{ES}, ΔE Signal and Continuum shape parameters fixed from MC
- •BB BKG PDF described by fixed histograms from MC

•Dilutions (D_c , ΔD_c) fixed from B \rightarrow ccK^(*) analysis (Phys. Rev. D 79, 072009)

Epiphany 2012 Conference, KracowM. Margoni Universita` di Padova & INFN

Epiphany 2012 Conference, Kracow

Summary: $sin(2\beta_{eff})$ from b-sqq

b→sγ: Motivations

Beyond Standard Model:

New heavy particles in the loop could:

- Modify BR wrt SM prediction
- Modify CP parameters via righthanded currents

FCNC process forbidden at tree level: **Probe the SM!** NNLL order BR(b → sγ)_(E*v>1.6 GeV)=(3.15±0.23)*10⁻⁴ s,d (Misiak et al. PRL 98 022002) •Emitted photons in b-sy ($\overline{b} \rightarrow \overline{sy}$) predominantly left(right)-handed with the same weak-phase: Time-dependent CP asymmetry is suppressed by 2m /m •Expected mixing-induced parameter $S \sim O(3\%)$; direct CP asymmetry parameter $C \sim -0.6\%$ (Atwood et al., Phys. Rev. Lett. 79, 185; Atwood et al., Phys. Rev. D 71, 076003)

•Today:

B⁰ $\rightarrow \Phi K^0$ γ : First observation (Belle)

•At future High Luminosity B Factories will provide precise Time-dependent measurements & probe the photon polarization 8

Epiphany 2012 Conference, Kracow

Belle B→ΦKγ (791 fb⁻¹)

PRD 84, 071101(R)

Breconstruction:

•B⁺ $\rightarrow \Phi(K^+K^-)K^+\gamma$, B⁰ $\rightarrow \Phi(K^+K^-)K^0_{s}(\pi^+\pi^-)\gamma$ selected with cuts on M(K⁺K⁻), M($\pi^+\pi^-$)

•K identification based on a Likelihood Ratio (Cherenkov, Time of Flight & Drift Chamber informations): ϵ =90%, Purity 92%

•High energy prompt γ selected with 1.4 GeV<E_v(B_{CM})<3.4 GeV

 π⁰/η BKG reduced exploiting M(γγ) & e.m. shower profile combined in a Likelihood Ratio

•B candidates identified by means of ΔE and m_{ES}

•Dominant BKG from Continuum suppressed by a Likelihood Ratio using event-shape variables (removed 91% of BKG retaining 76% of Signal)

• $D^0\pi^0$, $D^0\eta$, $D^-\rho^+$ Peaking Background vetoed rejecting $\Phi K^0_{\ s}$ combination compatible with the D mass

•Non Resonant $K^*K^-K\gamma$ BKG estimated in the Φ side-band in data

Epiphany 2012 Conference, Kracow

M. Margoni Universita` di Padova & INFN

9

Belle B→ΦKγ (791 fb⁻¹)

PRD 84, 071101(R)

•Signal yield extracted from an extended unbinned maxmimum likelihood fit to the two-dimensional (ΔE , m_{FS}) distribution

•Continuum parameters floated in the fit; Peaking BKG shape fixed to the signal one; Other BKG shapes fixed to MC & adjusted using $K^{*0}(K^{+}\pi^{-})\gamma$ control sample

Belle B→ΦKγ (791 fb⁻¹)

PRD 84, 071101(R)

Epiphany 2012 Conference, Kracow

Summary: b→sγ

•HFAG Compilation does not show any deviation from Standard Model

expectations (HFAG, http://www.slac.stanford.edu/xorg/hfag/)

	b→sγ S	S _{CP} HF	AG 2010 INARY	b→sγ	C _{CP}	HFAG ICHEP 2010 PRELIMINARY	
	BaBar PRD 78 (2008) 071102	-0.03 ± 0.29	± 0.03	BaBar PRD 78 (2008) 071102 ►	* 8	0.14 ± 0.16 ± 0.03	
κ* Κ	Belle PRD 74 (2006) '1111 104	-0.32 ^{+0.36}	± 0.05	Belle PRD 74 (2006) 111104	¥ <mark>∃</mark> ★	0.20 ± 0.24 ± 0.05	
	Average HFAG correlated average	-0.16	± 0.22	Average HFAG correlated average	<u></u>	-0.04 ± 0.14	
~	BaBar PRD 78 (2008) 0711027 =	-0.17 ± 0.26	± 0.03	BaBar → PRD 78 (2008) 071102 →	+ 12 ·	0.19 ± 0.14 ± 0.03	
о <mark>ж</mark>	Belle PRD 74 (2006) 111104(K)	-0.10 ± 0.31	± 0.07	Belle PRD 74 (2006) 111104(R)	A A A A A A A A A A A A A A A A A A A	0.20 ± 0.20 ± 0.06	
	Average HFAG correlated average	-0.15	± 0.20	Average HFAG correlated average		-0.07 ± 0.12	
λL	BaBar PRD 79 (2009) 01 102	-0.18 ^{+0.49}	± 0.12	BaBar PRD 79 (2009) 011102 *	2010	$-0.32^{+0.40}_{-0.39} \pm 0.07$	
ר _s	Average HFAG correlated average	-0.18	± 0.49	Average HFAG correlate <mark>d average</mark>	E C	-0.32 ± 0.40	
λ.	Belle PRL 101 (2008) 25160	0.11 ± 0.	33 ^{+0.05} -0.09	≻ Belle PRL 101 (2008) 251601	9 -	0.05 ± 0.18 ± 0.06	
K S	Average HFAG correlated average	0.11	± 0.34	Average HFAG correlated average		-0.05 ± 0.19	
~	Belle PRD 84 (2011) 071101	<u>5</u> x 0.74 ⁺⁰	.72 +0.¶0 ⁻¹ .05 -0.24 ≻-	Belle PRD 84 (2011) 071101	5010	$-0.35 \pm 0.58 \begin{array}{c} +0.10 \\ -0.23 \end{array}$	
×s.	Average HFAG correlated average			Average HFAG correlated average	<u>н</u>	-0.35 ± 0.60	
-2		1	-1.8 -1.6	-1.4 -1.2 -1 -0.8 -0.6 -0.4	-0.2 0 0.2 0.	4 0.6 0.8 1	
	B [°] ΦK [°] _s γ Belle First Observation						
						12	

Epiphany 2012 Conference, Kracow

$$|B_q^{L,H}\rangle = \frac{1}{\sqrt{1+|(q/p)_q|^2}} \left(|B_q\rangle \pm (q/p)_q |\overline{B}_q\rangle\right)$$

→If |(q/p)_q|=1 they would be also
 CP Eigenstates

13

•Neglecting O(m²_b/M²_W):

$$\Delta m_q = m_H - m_L = 2 \left| M_{12}^q \right|; \Delta \Gamma_q = \Gamma_L - \Gamma_H = 2 \left| \Gamma_{12}^q \right| \cos \phi$$

$$\phi = arg \left(-M_{12}^q / \Gamma_{12}^q \right) \quad \text{CP violating phase}$$

Epiphany 2012 Conference, Kracow

Summary: CPV in B^o mixing

Y(4S) machines & Hadron Colliders: b quarks produced mainly in bb pairs
 → CP Asymmetry (time-independent):

$$A_{CP} = \frac{Prob(\bar{B^{0}} \to B^{0}, t) - Prob(\bar{B^{0}} \to \bar{B^{0}}, t)}{Prob(\bar{B^{0}} \to B^{0}, t) + Prob(\bar{B^{0}} \to \bar{B^{0}}, t)} = \frac{N(\bar{B^{0}} B^{0}) - N(\bar{B^{0}} \bar{B^{0}})}{N(\bar{B^{0}} B^{0}) + N(\bar{B^{0}} \bar{B^{0}})}$$

•Experimentally: measure charge asymmetry in **mixed** semileptonic B⁰ events:

$$A_{SL} = \frac{N(\ell^+\ell^+) - N(\ell^-\ell^-)}{N(\ell^+\ell^+) + N(\ell^-\ell^-)} = \frac{1 - |q/p|^4}{1 + |q/p|^4} = \frac{|\Gamma_{12}|}{|M_{12}^q|} \sin \phi \qquad \stackrel{\rightarrow \text{CPV in mixing if:}}{A_{SL} \neq 0 \leftrightarrow |q/p| \neq 1 \leftrightarrow \Phi \neq 0}$$

Standard Model predicts
(Lenz, Nierste, J. High Energy Phys. 0706, 072):

$$\bullet B_d: \quad A^d_{SL} = (-4.8^{+1.0}_{-1.2}) 10^{-4}$$

$$\bullet_d^{=} -5.2^{\circ}_{-2.1^{\circ}}^{+1.5^{\circ}}$$

$$\bullet_g^{=} -5.2^{\circ}_{-2.1^{\circ}}^{+1.5^{\circ}}$$

$$\bullet_g^{=} -5.2^{\circ}_{-2.1^{\circ}}^{+1.5^{\circ}}$$

$$\bullet_g^{=} -5.2^{\circ}_{-2.1^{\circ}}^{+1.5^{\circ}}$$

$$\Phi_d^{=} -5.2^{\circ}_{-2.1^{\circ}}^{+1.5^{\circ}}$$

$$\Phi_g^{=} -5.2^{\circ}_{-2.1^{\circ}}^{+1.5^{\circ}}^{+1.5^{\circ}}^{+1.5$$

Summary: CPV in B^o mixing

•New results from Beauty-Factories & LHCb will be available soon

Epiphany 2012 Conference, Kracow

M. Margoni Universita` di Padova & INFN

15

CP violation in D decays: Motivations

Standard Model:

•Charm physics is ~CP conserving:

$$\begin{bmatrix} \mathsf{CKM} \end{bmatrix} = \begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta + \frac{i}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{\lambda^2}{2} - \frac{i\eta A^2 \lambda^4}{4} & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

•Indirect CPV predicted to be $a_{CP}^{ind} < O(10^{-3})$ and **universal** for CP eigenstates

•Direct CPV a_CP

- Negligible in Cabibbo-Favoured & Doubly-Cabibbo-Suppressed decays (Bergman et al. JHEP 09, 031)
- → Largest in Singly-Cabibbo-Suppressed decays O(10⁻⁴ - 10⁻³) (Buccella et al. Phys. Rev. D 51, 3478)

•Recent evidence in Time-integrated D⁰ asymmetry from LHCb (see Ukleja talk): $A_{CP}(K^+K^-)-A_{CP}(\pi^+\pi^-)=(-8.2\pm2.1\pm1.1)10^{-3}$

(arXiv:1112.0938v1)

Epiphany 2012 Conference, Kracow

Beyond Standard Model:

•New Physics could enhance direct & indirect CPV up to ~O(10⁻²) through loop diagrams (Grossman et al. Phys. Rev. D 75, 036008; Bigi, arXiv:0907.2950)

•Today:

SCS modes with gluonic penguin very promising to search for direct CPV from interference between Tree and Penguin amplitudes

BaBar $D^+_{(s)} \to K^+ K^0_s \pi^+ \pi^-$ (520 fb⁻¹)

D reconstruction:

•Singly-Cabibbo-Suppressed & Cabibbo-favoured $D^+_{(s)} \rightarrow K^+K^0_{s}(\pi^+\pi^-)\pi^+\pi^-$

selected with cuts on M($\pi^+\pi^-$), $\pi^+\pi^-$ vertex quality, K⁰ decay lenght

•K⁰_s combined with K⁺ $\pi^{+}\pi^{-}$ with common vertex detached from interaction region (ϵ_{κ} =90%, ϵ_{π} =1.5%) •Signal selected by means of a Likelihood Ratio (p_{CM}(D), D transverse decay

length, vertex probability)

BaBar $D^+_{(s)} \to K^+ K^0_s \pi^+ \pi^- (520 \text{ fb}^{-1})_{\text{PRD 84, 031103}}$

 T-odd correlation observable built from final state momenta:

$$C_T\equivec{p}_{K^+}\cdot(ec{p}_{\pi^+} imesec{p}_{\pi^-})$$

D⁺ rest frame

•CPT theorem: Asymmetry in T-odd observable indicates CPV

$$A_T \equiv \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$$

 Final State Interactions could produce $A_{\tau} \neq 0$ due to strong phases (Bigi et al. Int. J. Mod. Phys. A 24S1, 657)

Effects removed by using

$${\cal A}_T \equiv rac{1}{2} \left(A_T - ar{A}_T
ight)$$

→ A_{τ} defined on CP-conjugate process (Bensalem et al. Phys. Rev. D 66, 094004; Phys. Lett. B 538, 309; Phys. Rev. D 64, 116003)) 18

BaBar $D^+_{(s)} \to K^+ K^0_s \pi^+ \pi^- (520 \text{ fb}^{-1})$ PRD 84, 031103

•Sample divided according to $D_{(s)}$ charge and C_{T} sign

•Signal yields & asymmetries obtained from simultaneous fit to mass spectra sharing same parameters among different subsamples

$A_T(D^+) = (+11.2 \pm 14.1_{\text{stat}} \pm 5.7_{\text{syst}}) \times 10^{-3}$	RESULTS
$\bar{A}_T(D^-) = (+35.1 \pm 14.3_{\text{stat}} \pm 7.2_{\text{syst}}) \times 10^{-3}$	$\mathcal{A}_{\tau}(D^{+})=(-12.0\pm10.0\pm4.6)10^{-3}$
$A_T(D_s^+) = (-99.2 \pm 10.7_{\text{stat}} \pm 8.3_{\text{syst}}) \times 10^{-3},$	$\mathcal{A}_{\tau}(D_s) = (-13.6 \pm 7.7 \pm 3.4) 10^{-3}$
$\bar{A}_T(D_s^-) = (-72.1 \pm 10.9_{\text{stat}} \pm 10.7_{\text{syst}}) \times 10^{-3}$	In agreement with SM
•Final State Interaction produces CPV effects only in D _s decays due to	To be compared with FOCUS previous results (Phys. Lett. B 622, 239):
different resonance substructure	$\mathcal{A}_{T}(D^{+})=(23\pm62\pm22)10^{-3}$
between D and D _s (e.g. K [*] K [*])	$\mathcal{A}_{T}(D_{s})=(-36\pm67\pm23)10^{-3}$

•Systematics dominated by reconstruction asymmetries, Likelihood Ratio selection and particle identification

Epiphany 2012 Conference, Kracow

Belle $D^+ \rightarrow \Phi \pi^+$ (955 fb⁻¹) arXiv:1110.0694

•SCS and CF decays $D^+ \rightarrow \Phi(K^+K^-)\pi^+$ reconstructed using K, π candidates surviving proton & lepton vetos ($\epsilon \sim 90\%$, Misid. Prob. $\sim 5\%$) •D⁺ candidates constrained to originate from interaction region •Dominant Combinatorial BKG from B decays reduced exploiting M(K⁺K⁻), $p_{CM}(D)>2.5 GeV/c$, p_{π} and helicity angle between K⁻ and D⁺ directions in the Φ rest frame

Reconstructed asymmetry depends on several contributions:

$$A_{CP}^{D_{(s)}^{+} \to \phi\pi^{+}} = \frac{\Gamma(D_{(s)}^{+} \to \phi\pi^{+}) - \Gamma(D_{(s)}^{-} \to \phi\pi^{-})}{\Gamma(D_{(s)}^{+} \to \phi\pi^{+}) + \Gamma(D_{(s)}^{-} \to \phi\pi^{-})}$$

•A_{CP}: Physics

• $A_{_{FR}}$: Forward-Backward cc production asymmetry in terms of $D_{(s)}$ polar angle in CM frame, θ^*

• A^{KK} , A^{π} : charge asymmetries due to detector K, π efficiencies

 ${\scriptstyle \bullet \text{CF}}$ D decays expected to have negligible A_{CP} : non-CP contributions reduced in the difference

$$\Delta A_{rec} = A_{CP}(D) - A_{CP}(D_s)$$

Epiphany 2012 Conference, Kracow

M. Margoni Universita` di Padova & INFN

$$= A_{CP} + A_{FB}(\cos\theta^*) + A_{\epsilon}^{KK} + A_{\epsilon}^{\pi}(p_{\pi}, \cos\theta_{\pi})$$

20

Belle $D^+ \rightarrow \Phi \pi^+$ (955 fb⁻¹) arXiv:1110.0694

•Signal yields obtained from Binned Likelihood Fit to $M(KK\pi)$ in 3D phasespace ($\cos\theta^*$, p_{π} , $\cos\theta_{\pi}$) bins

•Peak positions, D⁺ width and BKG parameters floated

21

•Dominant systematics from K charge asymmetry correction, $(\cos\theta^*, p_{\pi}, \cos\theta_{\pi}) \& M(KK\pi)$ binning, signal & BKG parameterization

Epiphany 2012 Conference, Kracow

M. Margoni Universita` di Padova & INFN

2.2

Summary: D⁰ decays

- $A_{CP}(D^0 \rightarrow f_{CP}) = a_{CP}^{dir}(f_{CP}) + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}, \langle t \rangle$ average decay time
- Combination of direct & indirect CPV obtained in terms of observables:

CP violation in t decays: Motivations

Standard Model:

•Negligible Direct CPV expected •Small $O(10^{-3}) A_{CP}$ into final states with K_{s}^{0} due to CPV in the kaon sector (Bigi, Sanda, Phys. Lett. B 625, 47; Calderon et al., Phys. Rev D 75, 076001)

•Today: τ → π K⁰ v

•Interference between $K_{s}^{0} \& K_{L}^{0}$ intermediate amplitudes plays an important role. Assuming a $K_{s}^{0} \longrightarrow \pi^{+}\pi^{-}$ fully efficient selection for decay times long compared to the K_{s}^{0} lifetime: $A_{Q} = \frac{\Gamma(\tau^{+} \rightarrow \pi^{+}K_{s}^{0} \bar{\nu}_{\tau}) - \Gamma(\tau^{-} \rightarrow \pi^{-}K_{s}^{0} \nu_{\tau})}{\Gamma(\tau^{+} \rightarrow \pi^{+}K_{s}^{0} \bar{\nu}_{\tau}) + \Gamma(\tau^{-} \rightarrow \pi^{-}K_{s}^{0} \nu_{\tau})}$ =(0.33±0.01)% for decay times~ τ_{K0s}

(Grossman, Nir, arXiv:1110.3790)

Epiphany 2012 Conference, Kracow

Beyond Standard Model:

•New Physics could significantly modify the measured $\tau \rightarrow \pi K^0_{s}v$ decay-rate charge asymmetry from the SM expectations

•Charged scalar boson exchange could reflect in differences between the T⁺ & T⁻ decay angular distributions (Kuhn, Mirkes, Phys. Lett. B 398, 407) 24

BaBar $T \to \pi^{-} K^{0}_{s} (\geq 0\pi^{0}) v (476 \text{ fb}^{-1})$

arXiv:1109.1527

•Events divided in two hemispeheres according to Thrust axis

hemisphere and one prompt Tag-lepton (e/ μ) with opposite charge in the other •Additional $\pi^0 \rightarrow \gamma\gamma$ candidates permitted (do not affect A_{α})

 Signal selected by means of two Likelihood Ratios (topological & kinematical quantities) to distinguish T from $q\overline{q}$ and to reduce K^0_{q} BKG •Bhabha, $\mu^+\mu^-$, and Continuum BKG suppressed exploiting p_{Prompt}, Thrustvalue, M(π⁻ K⁰ (≤3π⁰)) •Residual BKG from τ→ KK⁰ (≥0π⁰)v & $\tau \rightarrow \pi K^0 \overline{K}^0 v$ estimated from MC & corrected using L.R. data side-band f_{BKG}=(20.0±3.7)% Nsignal(T)=170211 Nsignal(T⁺)=169455 25

BaBar T→T⁻K⁰_s(≥0π⁰)v (476 fb⁻¹) arXiv:1109.1527

•After Continuum & non- K_{s}^{0} T decays subtraction, raw charge asymmetry: A_Q(e-Tag)=(-0.32±0.23)% A_Q(µ-Tag)=(-0.05±0.27)%

•No significant decay-rate asymmetries from selection criteria and detector response found in real & simulated $\tau \rightarrow h^+h^-h^+(\geq 0\pi^0)v$, BKG events rejected from the data sample and MC signal sample

•Decay-rate asymmetry modified by the different K^0/\overline{K}^0 nuclear interaction cross-sections with the material, related to K^{\pm} -nucleon one via isospin symmetry (Ko et al., arXiv:1006.1938v1)

→ Corrections computed on event-by-event basis in terms of (p, θ) of K⁰_c:

 A_{κ_0} (e-Tag)=(0.14±0.03)%; A_{κ_0} (μ-Tag)=(0.14±0.02)% Have to be subtracted from the raw asymmetry result

BaBar τ→π⁻K⁰_s(≥0π⁰)v (476 fb⁻¹)

arXiv:1109.1527

•After correction and taking into account the residual $\tau \rightarrow K_s^0$ BKG charge asymmetries:

A_q=(-0.45±0.24±0.11)% FIRST MEASUREMENT

•Systematics from detector & selection bias, BKG subtraction and K⁰/K⁰ nuclear interaction

Epiphany 2012 Conference, Kracow

• K_{s}^{0} - K_{L}^{0} interference affects the predicted A₀ = (0.33±0.01)%

Correction to be applied in terms of the K⁰ → π⁺π⁻ decay

time dependence of the selection efficiency (Grossman, Nir, arXiv:1110.3790):

•A_Q^{COR}=A_Q*(1.08±0.01)=(0.36±0.01)%

Measurement is 3.1 standard deviations from the SM predictions 27

Belle τ→π⁻K⁰_sv (699 fb⁻¹)

PRL 107, 131801

•Events divided in two hemispeheres according to Thrust axis • $\tau^+\tau^-$ events selected with a single prompt track + $K_{-}^0 \rightarrow \pi^+\pi^-$ candidate in one hemisphere and one prompt Tag-lepton or π with opposite charge in the other • π^0 BKG suppressed by rejecting events with photons in the signal side •Continuum BKG reduced exploiting thrust value & number of γ in tag side

Epiphany 2012 Conference, Kracow M. Margoni Universita` di Padova & INFN

Belle T→T⁻K⁰ v (699 fb⁻¹) S^{PRL 107, 131801}

$K^{0}_{s}\pi$ reference frame:

- • β = angle between e⁺e⁻CM and K⁰ dir.
- • Ψ = angle between e⁺e⁻ CM and τ dir. computed from the hadronic energy in the CM system

•Exchange of charged scalar Higgs boson in Multi Higgs Doublet Models:

→ Parameterized by a modified scalar Form Factor and dimensionless complex coupling constant n_s

(Choi et al., Phys. Rev. D 52, 1614)

 Reflects in difference between the mean values of cosβ cosΨ for τ⁺ and τ⁻ decays in bins of M²(K⁰ π):

 $A^{i}_{CP} = \langle \cos\beta \cos\Psi \rangle^{i}_{T_{-}} - \langle \cos\beta \cos\Psi \rangle^{i}_{T_{+}} = c_{i} Im(\eta_{s})$

•Decay-rate asymmetry due to $\tau^+\tau^-$ production $A_{_{FB}}$ and detector response determined on real data $\tau^- \rightarrow \pi^-\pi^+\pi^-\nu$ control sample in terms of the 3π momentum and polar angle:

$$\rightarrow \Delta A_{CP}(A_{FB}) \sim O(10^{-4}), \Delta A_{CP}(Detector) \sim O(10^{-3})$$

Epiphany 2012 Conference, Kracow

Belle τ→π⁻K⁰_sv (699 fb⁻¹)

PRL 107, 131801

- •A_{CP} computed in bins of M(K⁰_s π):
 - → No significant CPV observed

•Limits for the charged Higgs couplings obtained using different scalar Form Factor parameterizations:

→ |lm(η_c)|<(0.012-0.026) @90%CL

•Which reflects in:

→ |Im(XZ*)|<0.15 M²_{H±}/(1 GeV²/c⁴)

•Z, X: couplings of the charged Higgs boson to (τ, ν) and (u, s)

•Systematics from detector asymmetry, BKG subtraction, limited MC statistics

30

Epiphany 2012 Conference, Kracow

Conclusions

CP violation is an excellent laboratory for the search for physics beyond the Standard Model in systems where:

- It is expected to be suppressed (radiative penguins, B⁰ mixing, charm decays, tau decays)
- It is expected to be the same as in the "golden" b→ccs transitions (charmless hadronic B decays b→sqq)

Almost all results in agreement with expectations

In the Near Future LHCb & High Intensity B Factories will offer the Opportunity to:

- •Improve Experimental Techniques
- •Provide very stringent SM tests

Hopefully discover/understand New Physics

Epiphany 2012 Conference, Kracow

M. Margoni Universita` di Padova & INFN

31

Backup

Summary: $sin(2\beta_{eff})$ from b-sqq

•HFAG (end of 2011): Direct comparison of charmonioum and s-penguin averages gives χ^2 =0.7 (CL=0.40, 0.8 σ)

33

Epiphany 2012 Conference, Kracow

Belle $D^0 \rightarrow K^0_s P^0$ (791 fb⁻¹) arXiv:1101.3365v2

• $K^0_{s}P^0$ neutral pseudoscalar meson ($\pi^0/\eta/\eta'$), mixture of CF \overline{K}^0P^0 and DCS K^0P^0 :

- → No Direct A_{CP} , Indirect $A_{CP} \sim O(10^{-4})$
- K⁰ mixing in the final state leads to A_{CP}(D⁰→K⁰_sP⁰)~A_{CP}(K⁰)=(-0.332±0.006)% (PDG, J.Phys. G 37, 075021)
- •Flavor of the D⁰ obtained from the slow pion π_s^+ charge in the decay $D^{*+} D^0 \pi_s^+$ • $D^0 \to K^0_s(\pi^+\pi^-) P^0(\gamma\gamma)$ reconstructed with cuts on $M(\pi^+\pi^-)$, E γ , $M(\gamma\gamma)$ •BB BKG removed by $p_{CM}(D^*)>2.5$ GeV/c

•
$$A_{CP}(D^{0} \rightarrow K^{0}_{s}P^{0})$$
 measured from D* charge asymmetry:
 $A_{rec}^{D^{*+} \rightarrow D^{0}\pi_{s}^{+}} = \frac{N_{rec}^{D^{*+} \rightarrow D^{0}\pi_{s}^{+}} - N_{rec}^{D^{*-} \rightarrow \overline{D}^{0}\pi_{s}^{-}}}{N_{rec}^{D^{*+} \rightarrow D^{0}\pi_{s}^{+}} + N_{rec}^{D^{*-} \rightarrow \overline{D}^{0}\pi_{s}^{-}}} = A_{CP}^{D^{0} \rightarrow K_{S}^{0}P^{0}} + A_{FB}^{D^{*+}}(\cos\theta_{D^{*+}}^{CMS}) + A_{\epsilon}^{\pi_{s}^{+}}(p_{T\pi_{s}^{+}}^{lab}, \cos\theta_{\pi_{s}^{+}}^{lab})$
• A_{CP}^{-} : Physics

• A_{FB}^{-} : Forward-Backward cc production asymmetry • A_{ϵ}^{π} :Slow π efficiency asymmetry computed from the comparison of untagged D_{ϵ}^{0} • K⁻ π^{+} and tagged D_{ϵ}^{*+} • $D_{\epsilon}^{0}\pi_{\epsilon}^{+}$ • K⁻ $\pi^{+}\pi_{\epsilon}^{+}$ charge asymmetries Epiphany 2012 Conference, Kracow M. Margoni Universita` di Padova & INFN

Belle $D^0 \rightarrow K^0 P^0$ (791 fb⁻¹)

arXiv:1101.3365v2

A^{D°→K}^{§h}

A CP

 Signal yields obtained from a fit to D** & D*- $\Delta M = M(D^*) - M(D^0)$ distribution

•A_{CP} & A_{FB}(D^{*+}) computed in bins of
$$cos(\theta_{D^{*+}})$$
:

N(K⁰ π⁰)=326303±679 N(K⁰ η)=45831±283 N(K⁰ η')=26899±211

ΥC. **RESULTS:** 0.05 $A_{CP}(K^{0},\pi^{0})=(-0.28\pm0.19\pm0.10)\%$ [CLEO previous result A_{CP} =+0.1±1.3%] -0.05 -0.05 A_{CP}(K⁰ η)=(0.54±0.51±0.16)% FIRST 0.5 lcosθ_D^{CMS} 0.5 Icosθ_{D⁺+} AD' A_C(K⁰ η')=(0.98±0.67±0.14)% FIRST 0.05 In agreement with SM $\bullet A_{_{FR}}$ results compared with LO -0.05 -0.05 0.5 Icosθ_{D⁺⁺} 0.5 lcosθ_{D⁺} predictions: deviations due to higher AD. 0.05 order corrections 0 Systematics from slow pion efficiency asymmetry, difference in interaction of -0.05 -0.05 K^{0} and \overline{K}^{0} with the material, fitting Icos0 ICOS0CMS 35 method and binning M. Margoni Universita` di Padova & INFN Epiphany 2012 Conference, Kracow