

The SuperB detector

and its Physics reach

Alberto Lusiani

INFN and Scuola Normale Superiore Pisa

(on behalf of the SuperB collaboration)

Epiphany Conference Cracow, 9-12 January 2012

- SuperB introduction and physics motivation
- SuperB detector (very shortly)
- SuperB physics reach
- recent progress in funding, schedules, organization

B-factories overconstrained Standard Model & searched for New Physics

CKM matrix phase main source of CP violation (2008 Nobel prize to M.Kobayashi & T.Maskawa)
 no evidence (but perhaps few glimpses) of Physics beyond the Standard Model

The intensity & precision frontier

energy frontier

► NP existence & scale through effects of ~on-shell amplitudes with definite energy threshold

intensity & precision frontier (low-energy)

- ► NP existence & **flavour structure** through effects of **off-shell amplitudes**
- processes very suppressed or even forbidden in the SM
 - FCNC processes $(b \to s\gamma, B_{s,d} \to \mu^+\mu^-, \mu \to e\gamma, \tau \to \mu\gamma, K \to \pi\nu\nu)$
 - FCNC & CPV in B_{s,d} and D decay/mixing
 - CPV effects in the electron/neutron EDMs, $d_{e,n,...}$
- processes predicted with high precision in the SM
 - EW observables like $(g-2)_{\mu}$
 - Lepton Universality & helicity suppression in $R_M^{e/\mu} = \Gamma(M \to e\nu)/\Gamma(M \to \mu\nu)$ with $M = \pi, K$

Intensity & precision frontier experimental options

light leptons & hadrons

- ▶ e.g. MEG, NA62
- Iower energy, Iower cost, higher intensity & precision
- less variety of processes, no access to heavy-flavour physics
- smaller size NP effects
- heavy leptons & hadrons
 - ▶ BES, LHCb, Belle2, SuperB
 - ► higher energy, higher cost, statistics limited by power consumption & cost
 - ► larger variety of processes (especially in e^+e^-), access also to heavy-flavour physics
 - ► larger size NP effects

NP signals in hadrons and leptons at the intensity frontier

hadrons

- NP amplitudes compete with SM amplitudes in forbidden / suppressed / mixing&CPV processes
- CPV in B mesons ideal because CKM matrix makes it maximal and relatively well calculable
- in SM, D mixing and CPV are smaller and less precisely predicted
- theory QCD-related uncertainties
 - important is several cases (D's, $b \rightarrow s\gamma$, ϵ_K) (lattice QCD progress dependence)
 - quite small in some cases (CPV in $B \rightarrow J/\psi K_S, K \rightarrow \pi \nu \nu$)
- (charged) leptons
 - (charged) Lepton Flavour Violation
 - clean, mostly QCD-free SM prediction, unambigous NP signal detection
 - NP effects less direct than for hadrons (typically, unknown mass-scale heavy neutrino sector)
 - possibly related to neutrino mixing, esp. θ_{13}
- asymmetric $\Upsilon(4S)$ Super-Flavour-Factories best for most measurements (tau leptons included)
- additional valuable option is running at the charm / tau production threshold

The SuperB project

- $\Upsilon(4S)$ -peak asymmetric energy e^+e^- Super Flavor Factory
- flexible design will also allow running at the charm threshold
- 80% polarized electron beam further defines the already clean initial e^+e^- state
- accelerator: 100× B-factories luminosity with same power by squeezing beams (ILC)
- detector: moderately improved BABAR detector (e.g. vertex detector closer to the beam)
- $L \approx 10^{36} \text{ cm}^{-2} \text{s}^{-1}$ around $\Upsilon(4S)$ peak, $L \approx 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ at tau/charm threshold
 - > $\Upsilon(4S)$: coherent *B* mesons & time-dep. measurements, charm hadrons, tau leptons
 - charm threshold: coherent D mesons & time-dep. measurements, tau leptons
- Physics program
 - topics: bottom and charm physics, tau LFV, precision EW, light new physics
 - emphasis: new physics sensitivity competitive and complementary with LHC experiments
 - don't forget: e^+e^- clean data for precision measurements in almost every energy-accessible topic
- data-taking: beginning of 2017
 - ▶ plan: 75 ab⁻¹ around $\Upsilon(4S)$ (+ continuum), 0.5 ab⁻¹ at charm threshold, 1 ab⁻¹ at $\Upsilon(5S)$

SuperB Detector sketch

SuperB Detector requirements

- similar requirement as B-factories
 - ► Large solid angle coverage, good lepton ID, πK PID up to 4 GeV
 - resolve B mesons decay time difference
 - good low momentum resolution, good low energy photon energy resolution
- main differences w.r.t. BABAR
 - lower machine boost to maximize luminosity ($\beta \gamma = 0.24$ vs. $\beta \gamma = 0.56$ in BABAR)
 - -> need twice better tracking resolution to compensate
 - -> SVT layer 0 in addition to 5 BABAR-like layers
 - ▶ 100x higher luminosity (and both \sqrt{L} and *L*-scaling backgrounds)
 - → faster & more robust detectors
 - → open, 100% efficient trigger
 - emphasis on hermeticity (helped by lower boost)
 - → advantage over LHCb is channels with neutrals/neutrinos, or inclusive final states
 - → forward EMC, studies on forward PID and backward EMC
- thanks to low beam currents, can re-use parts of BABAR detector (Csl, DIRC quartz bars)

SuperB Detector, major changes w.r.t. BABAR

- SVT layer 0, several options
 - striplets: baseline, reliable technology but occupancy may become a problem eventually
 - hybrid pixels: R&D is completing, can sustain large occupancies
 - MAPS (Monolithic Active Pixels): very thin Si but need active liquid cooling
 - IPHC-Strasbourg CMOS pixels
- forward EMC with LYSO
- impact of backward EMC and forward PID evaluated for hermeticity-demanding channels
 - none is critically needed, moderate improvements on physics output
 - will include only if budget and collaborating institutions allow
- solid baseline design is becoming finalized, TDR by ~end of Feb 2012

SuperB Physics Aims

New Physics (NP) expected beyond Standard Model, perhaps at $\Lambda \sim 1 \text{ TeV}$

SuperB can search for NP, in a complementary & competivive way with LHC, MEG and other expts

case 1 LHC finds New Physics (therefore determining A)

SuperB can study NP flavour structure, but can also be sensitive to larger scales than LHC

case 2 the NP scale is beyond the LHC reach

- SuperB can look for indirect NP signals up to $\Lambda \sim 10 \text{ TeV}$ and more
- SuperB vs. Belle2
 - beam polarization, charm threshold ability, larger design luminosity, starts ~2 years later
 - competition worked fine for BABAR and Belle
- LHCb and MEG partly competitive and partly complementary
 - some B final states are only measurable by SuperB (with neutrals or missing momentum)
 - SuperB can test tau LFV, CPV, EDM, g-2, can search for light new physics
 - SuperB can do useful measurements on entangled charm mesons decays

SuperB physics studies initiated in ~2005

- 2005 Hewett et al., The Discovery Potential of a Super B factory, hep-ph/0503261
- 2007 Conceptual Design Report, arXiv:0709.0451 [hep-ex]
- 2008 Valencia retreat proceedings, arXiv:0810.1312 [hep-ex]
- 2010 SuperB white paper: Physics, arXiv:1008.1541 [hep-ex]
- 2011 The impact of SuperB on flavour physics, arXiv:1109.5028v2 [hep-ex]

Two recent workshops on high intensity frontier measurements

- Workshop on charm physics at threshold (21 23, October, 2011, IHEP, China) http://bes3.ihep.ac.cn/conference/threshold2011/index.html
- Fundamental Physics at the Intensity Frontier (Nov 30-Dec 2, 2011, Rockville, MD USA) http://www.intensityfrontier.org/

SuperB golden modes

(indirect searches for NP need 1) good exp. precision & 2) good theory understanding)

- **B**_{u,d} Physics
 - $\blacklozenge B^+ \to \tau^+ \nu, \quad B^+ \to \mu^+ \nu, \quad B^+ \to K^{(*)+} \nu \overline{\nu}, \quad b \to s \gamma, \quad b \to s \ell \ell$
 - precision sin 2 β measurements, in particular $B \rightarrow \eta' K_S^0, \rightarrow K_S^0 \pi^0 \gamma$

τ Physics

• Lepton flavour violation in tau decays: especially $\tau \to \mu \gamma$ and $\tau \to 3\ell$

Charm Physics

mixing parameters and CP violation

B_s Physics

- Semi-leptonic *CP* asymmetry A_{SI}^{s}
- $B_{\rm S} \to \gamma \gamma$

Other Physics

- Precision EW measurement at $\sqrt{s} = 10.58 \text{ GeV}/c^2$ with polarized beams
- Direct searches for non-standard light Higgs bosons, Dark Matter and Dark Forces

 $\mathcal{B}(\boldsymbol{B} \to \tau \boldsymbol{\nu})$

- helicity suppressed, reasonably clean SM prediction
 - (within the SM, BR proportional to $|V_{ub}|^2$ and f_B^2 . Now tension with other $|V_{ub}|$ determinations)
- negative interference from charged Higgs amplitude (favoring tau over muon)
- non trivial selection and bkg suppression because of neutrinos in final state
- SuperB offers ideal conditions
 - clean events, hermetic detector, well defined initial state, just 2 Bs
 - tag other side with reconstructed B
 - study "extra-energy" distribution with data for bkg subtraction
- 3% measurement is possible

$\mathcal{B}(B \rightarrow \tau \nu)$ effective constraint on charged Higgs NP

• $r_H = \mathcal{B}(B \to \tau \nu) / \mathcal{B}_{SM}(B \to \tau \nu)$ limits assuming the SM value is measured

ATLAS exclusion limit for $30 \, \text{fb}^{-1}$ at 14 TeV computed using arXiv:0901.0512

- W.Altmannshofer, A.J.Buras, and P.Paradisi, Phys.Lett.B688, 202 (2010), arXiv:1001.3835 [hep-ph]
- left: ϵ , η bounds from measurements
- right: overall ϵ , η bounds now vs. SuperB with 75 ab⁻¹

From ~10% to ~1% experimental precision on CKM

bands show 95% constraints, 2006 values assumed for the SuperB fit

From ~10% to ~1% experimental precision on CKM

SuperB Measures the sides and angles of the Unitarity Triangle

Epiphany Conference, Cracow, 9-12 January 2012

SuperB Tau Physics NP probes

SuperB 10–100 times more sensitive than BABAR to tau LFV modes

SuperB beam polarization effects on $\tau \rightarrow \mu \gamma$ LFV search

SuperB $\tau \rightarrow \ell \gamma$ constraints on LHT model with breaking scale at 500 GeV

- SuperB reach from arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- predictions from M. Blanke et al. arXiv:0906.5454

Tau g-2 at SuperB with beam polarization

MSSM would shift muon g-2 by about the presently observed discrepancy $\Delta a_{\mu} \approx 3.10^{-9}$

Δa_{μ} and Δa_{τ} for various SPS points											
SPS 1a 1b 2 3 4 5											
$\Delta a_{\mu} imes 10^{-9}$	$\Delta a_{\mu} imes 10^{-9}$ 3.1 3.2 1.6 1.4 4.8										
$\Delta a_{ au} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3					
(specific para	amete	rs can	produ	ice Δa	$_{ au}$ as hi	gh as 1⋅10 ⁻⁵)					

- J.Bernabeu et al., JHEP098P1108 estimate SuperB $\sigma(a_{\tau}) = [0.75 1.7] \cdot 10^{-6}$
 - SuperB actually measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - however, Δa_{τ} from high energy NP contributions is constant for small q^2
 - \blacktriangleright real part from τ polar angle distribution or transv.&long. polarization

from tau EDM studies (see next slides) with more realistic assumptions \rightarrow SuperB $\sigma(a_{\tau}) \sim 2.4 \cdot 10^{-6}$

Tau EDM at SuperB

- ♦ $|d_e| < 1.6 \cdot 10^{-27} e \text{ cm}$ at 90% CL, 10.1103/PhysRevLett.88.071805 / PDG10
- most NP models expect $|d_{\tau}| \propto (m_{\tau}/m_e)|d_e|$
- SuperB 2010 Physic Report reviews NP models expectations and concludes that: $|d_e|$ upper limit $\rightarrow |d_{\tau}^{NP}| < 10^{-22} e \text{ cm}$
- SuperB actually measures $d_{\tau}(q^2)$ form factor from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - ▶ however, high energy NP contributions are constant for small q^2
- beam polarization permits measurements based on single tau distributions
- ♦ J.Bernabeu et al., arXiv:0707.1658v1 [hep-ph], estimate SuperB $\sigma(d_{\tau}) \approx 7.2 \cdot 10^{-20} \text{ e cm}$
 - 100% electron beam polarization, no uncertainty
 - only $\tau \to \pi \nu, \tau \to \rho \nu$, no reconstruction uncertainty
- with more realistic assumptions, SuperB $\sigma(d_{\tau}) \approx 10 \cdot 10^{-20} e \text{ cm}$ (note that information can be obtained also from the other decay channels)
- ♦ extrapolate Belle EDM search, Phys. Lett. B551, 16 (2003), hep-ex/0210066 → SuperB $\sigma(d_{\tau}) \approx 17-34\cdot10^{-20}e$ cm (both real and imaginary parts)

Tau CPV at SuperB

SuperB D^0 -mixing reach using $\Upsilon(4S)$ data

Parameter	$x \times 10^3$	$y \times 10^3$	$\delta_{K\pi}$ (°)	$\delta_{K\pi\pi}$ (°)
σ (stat)	0.18	0.11	1.3	2.7
σ (stat) +(syst)	0.42	0.17	2.2	+3.3
SuperB 75 ab^{−1} a	t Ύ(4<i>S</i>) wi	th 0.5 ab ^{−1}	charm th	reshold ru
measure <i>D</i> strong) phases or	n entangled	D's at cha	
uperB 75 ab⁻¹ a	t Ƴ (4<i>S</i>) wi	th 0.5 ab ⁻¹	charm th	reshold ru
measure <i>D</i> strong	phases or	th entangled	D's at cha	rm thresho
Parameter	x × 10 ³	$y \times 10^3$	$\delta_{K\pi}$ (°)	δ _{Kππ} (°)
SuperB 75 ab ⁻¹ a	t Υ (4 <i>S</i>) wi	th 0.5 ab ⁻¹	charm th	reshold ru
measure D strong	phases or	th entangled	D's at cha	rm thresho
Parameter	$x \times 10^3$	$y \times 10^3$	$\delta_{K\pi}$ (°)	δ _{Kππ} (°)
σ (stat)	0.17	0.10	0.9	1.1

D⁰ mixing and CPV measurements on entangled D's at charm threshold

M.Rama, Workshop on Charm Physics at threshold, Beijing 21-23 October 2011

- Flavor tag at DD threshold provides identical time-dependence than at Υ(4S) using D* tagging, and less events, although in a different environment
- $D\overline{D}$ threshold is unique to provide CP, $K\pi$ and $Ks\pi\pi$ tags
- Variation of Δt resolution and geometrical acceptance vs CM boost was evaluated
- Estimated the impact on physics with 2-body decays
 - Combined fit to all 2-body double-tags allows determination of x, y, arg(q/p), |q/p|
 - > Best sensitivity at $\Psi(3770)$ for intermediate boost, $\beta \gamma \approx 0.3-0.6$

Parameter	Sensitivity @ Y(4S) with time resolution, no mistag. 75 ab ⁻¹	Best sensitivity $@ \psi(3770)$ with time resolution ($\beta\gamma$ =0.56), no mistag. 0.5 ab ⁻¹							
x	0.017%	0.11%							
У	0.008% 0.05%		Relative effect of flavor mistag						
Arg(q/p)	0.8 deg	4.8 deg	similar of $\Psi(3770)$ and $\Gamma(45)$						
q/p	0.5%	3.7%							

> error per ab⁻¹ at Y(3770) $\sim \frac{1}{2}$ error per ab⁻¹ at Y(4S) (2-body only, no mistag)

> error at $\Psi(3770)$ [0.5ab⁻¹] ~ 6x error at $\Upsilon(4S)$ [75ab⁻¹] (2-body only, no mistag)

Precise EW tests with polarized beams (M.Roney, SuperB Dec 2011 meeting)

Polarised e- beam yields product of the neutral axial-vector coupling of the electron and vector coupling of the final-state fermion via $Z-\gamma$ interference:

$$A_{LR} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle Pol \rangle$$

$$\langle Pol \rangle = 0.5 \left\{ \left(\frac{N_R^{e-} - N_L^{e-}}{N_R^{e-} + N_L^{e-}} \right)_R - \left(\frac{N_R^{e-} - N_L^{e-}}{N_R^{e-} + N_L^{e-}} \right)_L \right\}$$

$$g_A^e = T_3^e = 1/2 \qquad g_V^f = T_3^f - 2Q_f \sin^2 \theta_W$$

The SuperB detector and its Physics reach

Measure g_{Vb} and test LEP A_{FB}^{b} anomaly

Measurement of g_V^b

- SM: -0.34372 +0.00049-.00028
- A_{FB}^{b} : -0.3220±0.0077
- with 0.5% polarization systematic and 0.3% stat error, SuperB can have an error of ± 0.0021

Measure weak charged vector couplings ratios

take ratios of μ,τ,c,b A_{LR} so that of the electron
cancels polarisation systematic errors and the
electron axial-vector coupling: stat. error dominated

	SM	LEP	SuperB
	(Mh=125GeV)		error
$g_V^\mu / g_V^ au$	1	0.997 +/- 0.068	$\sim 2\%$ from tau stats
g_V^c / g_V^{lepton}	5.223 +/-	-4.991 +/- 0.074	~1% muon stats +/-0.05
g_V^b / g_V^{lepton}	9.357 +/-	8.58+/- 0.16	~1% from mu stats +/- 0.08

Measure sin θ_W energy evolution with σ_{LR} for μ, τ , charm and b

- plot adapted by A.Bevan from QWeak proposal (JLAB E02-020)
- precition not yet evaluated at charm threshold

Sensitivity of SuperB to specific NP models

list of NP models, full description in

- W.Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, arXiv:0909.1333 [hep-ph]
- arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics
- AC (SUSY) abelian model by Agashe and Carone based on a U(1) flavour symmetry
- RVV2 (SUSY) non-abelian model by Ross, Velasco-Sevilla and Vives
- AKM (SUSY) non-abelian model by Antusch, King and Malinsky
- δLL (SUSY) purely left-handed currents with CKM-like mixing angles
- FBMSSM flavour-blind MSSM
- GUT-CMM SUSY GUT
- SSU(5) SUSY GUT SU(5)
- LHT Littlest Higgs with T-parity
- RS Randall-Sundrum

Sensitivity of SuperB golden modes to specific NP models

Observable/mode	H ⁺	MFV NP	non-MFV	NP in	RH	LHT		_		SUSY	_	_
	high tan β	low tan β	2-3 sector	Z peng.	currents		AC	RVV2	AKM	δLL	FBMSSM	GUT-CMM
$\begin{array}{l} \tau \to \mu \gamma \\ \tau \to \ell \ell \ell \end{array}$						***	***	***	*	***	***	* * * ?
$\begin{array}{l} B \rightarrow \tau \nu, \mu \nu \\ B \rightarrow K^{(*)+} \nu \overline{\nu} \\ S \text{ in } B \rightarrow K_S^0 \pi^0 \gamma \\ S \text{ in other penguins} \\ A_{CP}(B \rightarrow X_S \gamma) \\ BR(B \rightarrow X_S \gamma) \\ BR(B \rightarrow X_S \ell \ell) \\ B \rightarrow K^{(*)} \ell \ell \text{ (FBA)} \end{array}$	★ ★ ★(CKM)	*	* ** **(CKM) *** ** **	* * *	* * * * * * *		* * * * *	* ** *	* * *	* *** ***	* *** ***	? ? ** ? ?
a ^s			***			***						***
Charm mixing CPV in Charm	**						***	*	*	* ***	*	

arXiv:1109.5028v2 [hep-ex] The impact of SuperB on flavour physics

SuperB vs. LHCb for 5 NP models (P.Paradisi, SuperB meeting, Dec 2011)

	SSU(5)	AC	RVV2	AKM	δLL	FBMSSM	
$S_{\phi K_S}$	***	***	••		***	***	
$A_{ ext{CP}}\left(B ightarrow X_{s}\gamma ight)$					***	***	CunorD
$B ightarrow {\cal K}^{(*)} u ar u$							onhei p
$ au o \mu \gamma$	***	***	***		***	***	
$D^0 - ar{D}^0$		***					SuperB
$A_{7,8}(B ightarrow K^*\mu^+\mu^-)$					***	***	VS.
$A_9(B o K^* \mu^+ \mu^-)$	-						<i>NHCP</i>
$igsid S_{\psi\phi}$	***	***	***	***			інср
$B_{s} ightarrow \mu^{+} \mu^{-}$	***	***	***	***	***	***	гнср
€K	***		***	***			
$K^+ o \pi^+ u ar{ u}$							
$K_L o \pi^0 u ar u$							
$\mu ightarrow oldsymbol{e}\gamma$	***	***	***	***	***	***	
$\mu + N ightarrow e + N$	***	***	***	***	***	***	
d _n	***	***	***	***	••	***	
d _e	***	***	***	••		***	
$(g-2)_{\mu}$	***	***	***	••	***	***	

elaboration using information in W.Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub, Anatomy and Phenomenology of FCNC and CPV Effects in SUSY Theories, arXiv:0909.1333 [hep-ph]

Epiphany Conference, Cracow, 9-12 January 2012

SuperB project progress 1

Conceptual Design Report (2007)

- arXiv:0709.0451v2 [hep-ex]
- 440 pages: Accelerator, Detector, Physics
- cost and schedule of accelerator & detector
- 320 signers from ~80 institutions

White paper

- accelerator: arXiv:1009.6178v1 [physics.acc-ph]
- detector: arXiv:1007.4241v1 [physics.ins-det]
- physics: arXiv:1008.1541v1 [hep-ex]
- updated costs and schedules

SuperB project progress 2

- **Dec 2010** Italian government funds SuperB as flaghship national research project
 - funds match preliminary estimates in INFN 2010-2012 3-year plan
 - funds allocated for 6 years (2010-2015), given as planned in 2010 and 2011
- May 2011 SuperB Kick Off Meeting -> collaboration formation begins
 - Tor Vergata accelerator site selected
- Sep 2011 1st SuperB collaboration meeting in London
- Oct 2011 Cabibbo Lab Consortium established
 - INFN & Rome Tor Vergata University agreement in July
 - ► IIT (Italian Institute of Technology) expected to join in near future
- Dec 2011 2nd SuperB collaboration meeting in Frascati
 - progress in both SuperB collaboration and Cabibbo Lab organization
- short term goals
 - Detector and Accelerator TDR (SuperB Physics Book will follow later in 2013)
 - Cabibbo Lab management and team recruiting (president is R.Petronzio)

Yearly funding profile (INFN 2010-2012 plan)

Componenti Super B	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10
Sviluppo Acceleratore (130 M€) Costruzione infrastrutture, Sviluppo damping rings, Sviluppo transfer lines, Messa in funzione linac, Damping lines transfer lines, Costruzione facility end-user	20	50	60							
Sviluppo Centri Calcolo (43 M€) Sviluppo progettazione costruzione centro di calcolo per analisi dati	5	15	23							
Completamento Acceleratore (126 M€) Installazione componenti negli archi acceleratore, Installazione zona di interazione, Messa in funzione acceleratore				42	42	42				
Utilizzo installazione (80 M€) Costi operazione e manutenzione acceleratore							20	20	20	20
Totale Infrastrutture tecniche (379 M€)	25	65	83	42	42	42	20	20	20	20
Overheads INFN (34.3 M€ equivalente al 9%)	2.3	5.9	7.5	3.8	3.8	3.8	1.8	1.8	1.8	1.8
Cofinanziamento INFN (150 M€)	15	15	15	15	15	15	15	15	15	15
Costo Totale del progetto (563.3 M€)	42.3	85.9	105.5	60.8	60.8	60.8	36.8	36.8	36.8	36.8

Epiphany Conference, Cracow, 9-12 January 2012

Accelerator cost (accelerator white paper, 2010)

	Table	26.1: Accel	erator buc	lget estima	te		
WBS	Item	Number of units	EDIA (mm)	Labor (mm)	M&S (k€)	Total (k€)	Repl. Value (k€) (not in total)
2.00	Overall SuperB Accelerator total		3159	2852	285350	357476	85760
2.01	Contingency and VAT (50%)		1053	951	95117	119159	0
2.02	Overall Super B Project Sub-tot	al	2106	1901	190233	238317	85760

- Italian 6-years funding of 270 MEuro in correct range
 (but was based on preliminary estimates in INFN 2010-2012 plan)
- ♦ VAT won't be due if an ERIC is established, as planned

Accelerator schedule, 5 years to operations (accelerator white paper, 2010)

	Т	able 25.1: Construction	on schedule					
Year	Quarter 1	Quarter 2	Quarter 3	Quarter 4				
1	 Tunnel design com Injector component s Ring component s Tunnel contracts a Injector component Ring components 	npleted nts designed tudied warded nts ordered designed	 Ring tunnel digging started Injector tunnel digging started Injector components started manufacturing Ring components designed Tunnel digging continued Injector components are in manufacturing Ring components orders started 					
2	 Ring tunnel diggir Injector tunnel fin Injector component Ring components 	ng continues ished nts start to arrive orders finished	 Ring tunnel is completed Injector installation starts Ring components start to arrive for installation PEP-II components shipped from SLAC 					
3	Injector installatioRing component in	n continues nstallation starts	Injector installationRing installation	on is completed continues				
4	Injector checkoutRing installation c	starts ontinues	Injector beam commissioning startsRing installation is completedRing checkout starts					
5	 Ring beam commit 	issioning starts	 SuperB beam del starts 	ivery to detector				

Planned SuperB integrated luminosity (M.Giorgi, Frascati, 13/12/2011)

Detector cost estimated at ~50 M Euro (detector white paper, September 2010)

		9. Superb 0		Juugei	
		EDIA	Labor	M&S	Rep.Val.
WBS	ltem	mm	mm	kEuro	kEuro
1	SuperB detector	4037	2422	52953	48922
1.0	Interaction region	21	12	860	0
1.0.1	Be Beampipe	10	4	260	0
1.0.2	Tungsten Shield	9	6	540	0
1.0.3	Radiation monitors	2	2	60	0
1.1	Tracker (SVT + Strip + MAPS)	408	442	6444	0
1.1.1	SVT	222	309	4326	0
1.1.2	L0 Striplet option	36	55	542	0
1.1.3	L0 MAPS option	150	78	1576	0
1.1.4	L0 Hybrid Pixel option	156	84	1684	0
1.2	DCH	165	139	3421	0
1.3	PID	116	236	5820	7138
1.3.1	DIRC Barrel (Focusing DIRC)	116	236	5820	7138
1.4	EMC	219	360	12147	31574
1.4.1	Barrel EMC	20	5	205	31574
1.4.2	Forward EMC	171	312	11565	0
1.4.3	Backward EMC	28	43	377	0
1.5	IFR	37	184	1374	0
1.6	Magnet	93	59	3767	10210
1.7	Electronics	994	342	9234	0
1.8	Online System	912	24	2074	0
1.9	Installation and integration	353	624	7596	0
1.A	Project Management	720	0	216	0

arXiv:1007.4241v1 [physics ins-det] Table 9: SuperB detector budget

Epiphany Conference, Cracow, 9-12 January 2012

Detector schedule, y1 = 2010 (detector white paper, September 2010)

ID	Task Name	Duration	Y1	-12	Y2 H1	H2	Y3 H1	H2	Y4	H2	Y5 Н1	H2	Y6 Н1	H2	Y7 Н1
1	Approval	0 wks	● 5/3	12		112		112		112	111	112		112	
2	Detector Design & Construction	182 wks													
3	Design SVT	52 wks			1										
4	Construct SVT	130 wks			Ĭ]			
5	Design DCH	52 wks			 _										
6	Construct DCH	130 wks			Ť										
7	Design PID	52 wks													
8	Construct PID	130 wks			•										
9	Design forward EMC	52 wks													
10	Construct forward EMC	130 wks			, Ť										
11	Design IFR	52 wks													
12	Construct IFR	120 wks													
13	Detector Technical Design Report	0 wks			•	4/29									
14	Dismantle & Move Babar	91 wks													
15	Design Tooling	26 wks													
16	Dismantle Babar	52 wks													
17	Component transportation	26 wks													
18	Detector Installation & Commissioning	200 wks													
19	Installation steel	52 wks													
20	Installation magnet	13 wks							-						
21	Installation IFR	20 wks													
22	Installation EMC	8 wks													
23	Installation PID	8 wks									-				
24	Installation DCH	8 wks										1			
25	Installation SVT	8 wks										■_			
26	Commissioning	26 wks													
27	Cosmic Ray test	26 wks													
28	Commissioning on beam	15 wks													
29	Detector ready for collision	0 wks												•	11/27
	Task	Miles	stone	•	•		Exte	ernal Tas	ks						
Project:	SBF_schedule_v1.2 Split	Sum	mary	, U		_	Exte	ernal Mile	estone						
Date: Fri	Progress	Proje	, oct Summary				Dea	dline		▼ □_,					
1	Figuess		Summary				Dea			~					

Epiphany Conference, Cracow, 9-12 January 2012

Summary

- the Super Flavour Factories Belle2 and SuperB are well motivated
- SuperB will start data-taking later than Belle2 but is designed to be:
 - more luminous
 - more flexible, with ability or running at the charm threshold
 - more versatile, providing beam polarization
- SuperB will be complementary to LHC, LHCb and other experiments like MEG
- with 75 ab^{-1} of clean e^+e^- events, a large variety of physics measurements will be possible
- SuperB detector will be an improved BABAR detector for high luminosity and smaller boost
- the SuperB collaboration is becoming more formally organized
- the SuperB detector TDR is bein prepared and is due to appear in the first months of 2012