The measurement of branching ratio of $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ and $B_s^0 \rightarrow D_s^{-} \pi^{+}$ in the LHCb experiment

Agnieszka Dziurda on behalf of the LHCb collaboration

Institute of Nuclear Physics PAS, Cracow Cracow University of Technology, Cracow

agnieszka.dziurda@cern.ch

11.01.2011

Outline

- Introduction
 - Overview LHCb studies related to $B \rightarrow DX$ decays
- Selection
 - Kinematic selection
 - Geometric selection
 - Particle Identification
- Results
 - $\bullet\,$ The mass fit for $B^0_s \to D^-_s \pi^+$, $B^0_s \to D^\mp_s K^\pm\,$ modes
 - Measurements of branching ratio
- Conclusions and plans

For more details look at LHCb-CONF-2011-057.

Overview LHCb studies related to $B \rightarrow DX$ decays

Decay mode/ analysis	Measurement(s)
ADS/GLW analysis	γ
GGSZ model-dependent/-independent analyses	γ
Dalitz analysis with $B ightarrow DK\pi$	γ
$B^0 ightarrow D^0 K^*$, $B_s ightarrow D^0 \phi$	γ
Time-dependent CP violation in $B_s \rightarrow D_s K$	A_{CP}, γ
Time-dependent CP violation in $B_s \rightarrow D_s K \pi \pi$	A_{CP},γ
B^0 , B_s and relative lifetime measurements	test HQET
Branching ratio measurements	$BR(B^0 \to DK)/BR(B^0 \to D\pi)$
Observations of rare modes: $B_s ightarrow DK/\pi$	exchange/annihilation topologies
$B^0 o D\pi$, $B_s o D_s \pi$	$\Delta m_d, \Delta m_s$
Ratio of yields in $B^0 o DK$ and $B_s o D_s \pi$	f_d/f_s

 (f_d/f_s) measurements \rightarrow see Piotr Morawski's presentation CPV in b system \rightarrow see Aurelien Martens' presentation The analysis is based on *pp collision* data sample of $336pb^{-1}$ collected at LHC in 2011 at the center-of-mass energy $\sqrt{s} = 7 \text{ TeV}$.

Both decay modes $B_s^0 \rightarrow D_s^- \pi^+$ and $B_s^0 \rightarrow D_s^\mp K^\pm$ are topologically identical and are selected using identical geometric and kinematic criteria.

Event selection

Trigger

- L0 selects a high transverse energy deposit
- HLT uses a bonsai boosted decision tree (BBDT)

Preselection

- well-reconstructed tracks for all particles
 - track $\chi^2/ndf < 4$
 - transverse momentum ($p_T > 250 \text{ [MeV/c]}$)
 - the impact parameter χ^2 w.r.t. the primary vertex > 4
 - max. the impact parameter χ^2 w.r.t. the primary vertex > 40
- ${\ensuremath{\, \bullet }}$ the flight distance χ^2 of the D_s^+ from the $B_s^0>2$
- vertex $\chi^2/ndf <$ 9 for D_s^+ and B_s^0 mesons
- $cos(\theta_{flight}) > 0.9999$ where θ_{flight} is the angle between the B_s^0 momentum vector and its direction of flight
- χ^2 of impact parameter w.r.t. the primary vertex < 16 for B_s^0 meson

Offline selection

Agnieszka Dziurda (IFJ PAN, PK)

Event selection: offline selection

The offline selection uses the gradient boosted decision tree (BDTG), which is one of the multivariative selection.

To not bias the results for decay mode only 10% of the full data sample is used in this optimization.

The optimal working point is chosen by evaluating the signal significance with respect to the combinatoric background:

$$Sig_{D_sK} = \frac{S_{D_s\pi}/14}{\sqrt{S_{D_s\pi}/14 + B}}$$
(1)

At the minimal BDTG value of 0.1, a significance of 4.4 is obtained corresponding to a reduction of the signal yield of 6% with a background reduction of 45%.

Agnieszka Dziurda (IFJ PAN, PK)

Particle Identification

Notation: DLL(X - Y) the difference in log-likelihood between X and Y hypothesis

	$B_s ightarrow D_s \pi$	$B_s ightarrow D_s K$
bachelor	$DLL(K-\pi) < 0$	$DLL(K-\pi) > 5$
π^- from D_s^-	$DLL(K-\pi) < 5$	$DLL(K-\pi) < 5$
K^+ from D_s^-	$DLL(K-\pi) > 0$	$DLL(K-\pi) > 0$
K^- from D_s^-	$DLL(K-\pi) > 5$	$DLL(K-\pi) > 5$

Removing $\Lambda_b \to \Lambda_c^+ \pi^-$, $\Lambda_c^+ \to p K^- \pi^+$ contamination

• DLL(K-p) > 0 for the kaon which has the same charge as the pion in $D_s \to KK\pi$

• the candidates had not to fall under the $\Lambda_c^+ \rightarrow p K^- \pi^+$ mass hypothesis (defined as ± 21 [MeV/ c^2] around the nominal value of 2285 [MeV/ c^2])

$B_s ightarrow D_s \pi$ mass fit

Parameter	Mag. down	Magnet Up
Num. combinatorics	860 ± 150	790 ± 230
Num. part. reco.	3200 ± 100	2420 ± 120
Num. $B^0_s ightarrow D^s \pi^+$	3360 ± 77	2678 ± 72
$B^0_s ightarrow D^s \pi^+$ mass mean [MeV/ c^2]	5259.4 ± 0.4	5360.4 ± 0.5

$B_s \rightarrow D_s K$ mass fit

Parameter	Mag. down	Magnet Up
Num. $B^0 ightarrow D_s^- K^+$	150 ± 18	91 ± 17
Num. $B^0_s o D^s \pi^+$ and $B^0 o D^- \pi^+$	161 ± 22	158 ± 21
Num. $B^0_s ightarrow D^{\mp}_s K^{\pm}$	221 ± 19	195 ± 18
$B^0_s o D^{\mp}_s {m K}^{\pm}$ mass mean $[{ m MeV}/c^2]$	5360.8 ± 1.8	5359.7 ± 1.8

Measurements of branching ratios $B \rightarrow D_s h$

$$\frac{B(B_s^0 \to D_s^{\mp} K^{\pm})}{B(B_s^0 \to D_s^{-} \pi^{+})} = 0.0647 \pm 0.0044(stat.)^{+0.0039}_{-0.0043}(syst.)$$
(2)

 $B(B_s^0 \to D_s^- \pi^+) = (3.04 \pm 0.19(stat.) \pm 0.23(syst.)^{+0.18}_{-0.16}(f_s/f_d)) \times 10^{-3} (3)$ $B(B_s^0 \to D_s^\mp K^\pm) = (1.97 \pm 0.18(stat.)^{+0.19}_{-0.20}(syst.)^{+0.11}_{-0.10}(f_s/f_d)) \times 10^{-4} (4)$

The world's most precise measurements!

Source	Uncertainty
Generator efficiency	3%
All non-PID selection	3%
Fit model $B^0_s o D^s \pi^+$	0.9%
Fit model $B^0_s o D^{\mp}_s K^{\pm}$	+4%,-5%
PID selection	0.9%
Total	+5.9%, $-6.7%$

Conclusions and plans

- First observation of the $B_s \rightarrow D_s K$ decay at LHCb.
- The world's most precise measurements of the $B_s \rightarrow D_s h$ branching ratios!
- In 2011 $O(fb^{-1})$ data were collected, 1300-1500 $B_s \rightarrow D_s K$ events expected.
- Preliminary results on time dependent CP measurements with $D_s h$ and Dh can be expected at Winter/Spring conferences 2012. First measurements of this kind from a hadron machine.
- Other results are expected: $B_s \rightarrow D_s \pi$ lifetime, updates of BF's and f_s/f_d measurements.

Thank You

$B_s \rightarrow D_s K$ mass fit

Parameter	Mag. down	Magnet Up
Num. $B^0 \rightarrow D_s^- K^+$	150 ± 18	91 ± 17
Num. $B^0_s ightarrow D^s \pi^+$ and $B^0 ightarrow D^- \pi^+$	161 ± 22	158 ± 21
Num. $B^0_s ightarrow D^{\mp}_s K^{\pm}$	221 ± 19	195 ± 18
$B^0_s o D^{\mp}_s K^{\pm}$ mass mean $[{ m MeV}/c^2]$	5360.8 ± 1.8	5359.7 ± 1.8

Background type	Mag. down	Mag. Up		
$B_s^0 \to D_s^{*-} \pi^+$	70 ± 23	63 ± 21	HCb = G = 7 DV $L_{La} = 56 \rho b^{-1}$ $B_{i}^{0} \rightarrow D_{i}^{+}K^{-1}$ $B_{i}^{0} \rightarrow D_{i}^{+}K^{-1}$	$B_i^0 \rightarrow D_i^* K^*$ $B_i^0 \rightarrow D_i^* K^*$ $B_i^0 \rightarrow D_i^* K^*$
$B^0_s \to D^{*-}_s K^+$	80 ± 27	72 ± 34	80 Magnet down $N_i = 2l2 \pm 19$ $B_i^0 \rightarrow D_i^{-*}K^{-*}$ $B_i^0 \rightarrow D_i^{-*}K^{-*}$	$\begin{array}{c} B_{i}^{r} \rightarrow D_{i}^{r} \dot{\rho} \\ \hline & \\ 70 \\ N_{i} = 194 \pm 18 \end{array} \qquad $
$B^0_s \to D^s \rho^+$	150 ± 50	135 ± 45	\tilde{s}_{2} ω $B_{i}^{i} \rightarrow D_{i}^{*\nu}p^{*}$ $B_{i}^{i} \rightarrow D_{i}^{*\mu}p^{*}$ $B_{i}^{\mu} \rightarrow D_{i}^{*\mu}p^{*}$	$\Delta_b \rightarrow D_i^{(2)+} p^+$ $B_b^c \rightarrow D_b^r p^-$ $B_b^c \rightarrow D_b^r p^-$
$B_s^0 \rightarrow D_s^- K^{*+}$	150 ± 50	135 ± 45	$ \begin{array}{c} \mathcal{A} \mathcal{B} \\ \mathcal{A} \\ $	\mathcal{A}^{0} $\mathcal{B}^{0} \rightarrow D^{*}K^{*}$ $\mathcal{B}^{0} \rightarrow D^{*}K^{*}$ $\mathcal{B}^{0} \rightarrow D^{*}K^{*}$
$B^0_s \to D^{*-}_s \rho^+$	50 ± 17	45 ± 15		20
$B^0_s \to D^{*-}_s K^{*+}$	50 ± 17	72 ± 15		
$\Lambda_b \rightarrow D_s^{(*)-} p$	80 ± 27	72 ± 34	Mass (MeV/c ²)	Mass (MeV/c ²)

The $B_s^0 \to D_s^{\mp} K^{\pm}$ branching fraction relative to $B_s^0 \to D_s^{-} \pi^+$

$$\frac{B(B^0_s \to D^{\mp}_s K^{\pm})}{B(B^0_s \to D^{-}_s \pi^+)} = \frac{N_{B^0_s \to D^{\mp}_s K^{\pm}}}{N_{B^0_s \to D^{-}_s \pi^+}} \frac{\epsilon^{\mathrm{PID}}_{B^0_s \to D^{-}_s \pi^+}}{\epsilon^{\mathrm{PID}}_{B^0_s \to D^{-}_s K^{\pm}}} \frac{\epsilon^{\mathrm{Sel}}_{B^0_s \to D^{-}_s \pi^+}}{\epsilon^{\mathrm{Sel}}_{B^0_s \to D^{-}_s K^{\pm}}}.$$

where
$$N_{B_s^0 \to D_s^{\mp} K^{\pm}} = 406 \pm 26$$
, $N_{B_s^0 \to D_s^{-} \pi^+} = 6038 \pm 105$,
 $\epsilon_{B_s^0 \to D_s^{\mp} K^{\pm}}^{\text{PID}} = 83.4 \pm 0.2 \ \epsilon_{B_s^0 \to D_s^{-} \pi^+}^{\text{PID}} = 85.1 \pm 0.2$.
 $\frac{\epsilon_{B_s^0 \to D_s^{-} \pi^+}^{\text{Sel}}}{\epsilon_{B_s^0 \to D_s^{-} \pi^{\pm}}^{\text{Sel}}} = 0.945 \pm 0.014$

The branching fraction of $B_s^0 \rightarrow D_s^- \pi^+$

$$B(B_{s}^{0} \to D_{s}^{-}\pi^{+}) = B(B^{0} \to D^{-}\pi^{+}) \frac{\epsilon_{B^{0} \to D^{-}\pi^{+}}}{\epsilon_{B^{0}_{s} \to D^{-}_{s}\pi^{+}}} \frac{N_{B^{0}_{s} \to D^{-}_{s}\pi^{+}}}{f_{d}} N_{B^{0} \to D^{-}\pi^{+}}} X$$
$$X \frac{B(D^{+} \to K^{-}\pi^{+}\pi^{+})}{B(D^{+}_{s} \to K^{+}K^{-}\pi^{+})}$$

(5)