

Study of the
$$B^- o D^{(*)+}_s {\cal K}^- \ell^- \overline{
u}_\ell$$
 decays at Belle

The inclusion of the charge-conjugate modes is implied

Motivation

Open questions in semileptonic B decays with $b ightarrow c \ell u$

- Known exclusive decays don't sum up to total inclusive branching fraction $B \to X_c \ell \nu$
- Discrepancies between measurements and theoretical expectations for semileptonic *B* decays to excited charmed resonances

 $\Rightarrow |V_{ub}|, |V_{cb}|$ accuracy depends on it

- Exploration of masses $m(D_sK) > 2.46$ GeV where resonant and non-resonant contributions are expected
- Impact on background description for many important processes, e.g. $B_s \rightarrow D_s X \ell \nu$.

Recently measured by BaBar¹: $\mathcal{B}(B^- \rightarrow D_s^{(*)+}K^-\ell_-\nu) = [6.13 \pm ^{+1.04}_{-1.03}(stat.) \pm 0.43(syst.) \pm 0.51(\mathcal{B}(D_s))] \cdot 10^{-4}.$ The analysis did not distinguish between D_s and D_s^* final states.

¹PRL 107, 041804 2011

 $\bullet\,$ Final state contains undetected neutrino $\Rightarrow\,$ cannot be fully reconstructed

• Four-body decay with unknown dynamics

• avoid selection requirements involving signal characteristics to limit model dependence²

²different from the BaBar analysis

- Analysis based on data sample of **656M** $B\overline{B}$ collected at Belle detector in clean environment of KEKB collider: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
- Signal efficiencies and background contributions evaluated from MC generated samples:
 - signal \rightarrow MC generated with the EvtGen package, \approx 60 times the expected signal (with PS model and ISGW2 model including the resonances that can decay to $D_s^{(*)}K$)
 - $B\overline{B}$ background \rightarrow MC with generic *B* decays equivalent to about 10 times the accumulated data used to evaluate the background from $B\overline{B}$
 - continuum($q\overline{q}, q = u, d, s, c$) background \rightarrow MC equivalent to about 6 times the accumulated data

Event reconstruction

• Use the cleanest channels for secondary decays:

Background suppression

B_{tag} fully reconstructed in hadronic decays many exclusive modes used

B_{tag} reconstructed in semileptonic $D^{(*)}l v_l$ modes

B_{tag} reconstructed inclusively/partially in hadronic or semileptonic modes

- Exploit tagging side
- Requirement of properly charged: prompt lepton ($p_{\ell-\text{tag}} > 0.5 \text{ GeV}$) on the tag side suppresses the main background from mixed up decay products: $B^{-}(\overline{B}^{0}) \rightarrow \ell^{-}X$ and $B^+(B^0) \rightarrow D_s^+ X'$
- S/B: before 2%, after 12%

Background suppression

$$egin{aligned} X_{tag} &
ightarrow X_{mis} ext{ of the tagging side} \ X_{tag} &= rac{|ec{p}_{mis}^{tag}| - |ec{p}_{vis}^{tag}|}{|ec{p}_B^{tag}|} \ -2 < X_{tag} < 3 \end{aligned}$$

 $M_{tag}^c \rightarrow$ inclusively reconstructed effective mass of the hadronic system produced in B_{tag} decay

$$egin{aligned} M^c_{tag} &= \sqrt{(E_{tag}-E_{\ell ext{-tag}})^2-(ec{p}^{tag}_{vis}-ec{p}_{\ell ext{-tag}})^2} \ M^c_{tag} &< 2.4 ext{GeV} \end{aligned}$$

Optimization

 $\begin{array}{l} \text{Maximize } \mathcal{F}.\mathcal{O}.\mathcal{M} = \frac{N_S}{\sqrt{N_S + N_B}} \\ \text{assuming that } \mathcal{B}(B \rightarrow D_s^{(*)} \mathcal{K} \ell \nu) = 5.0 \cdot 10^{-4} \end{array}$

Background model was tested for many variables in side-band regions

Unblind the signal box

Signal extraction

- Signal yields extracted from an extended unnbinned maximum likelihood fit
- Simultaneous fit to non-overlapping samples: $D_s^+ K^- \ell^-$ and $D_s^{*+} K^- \ell^-$ (events with accepted $D_s^* K \ell$ candidates are removed from the set of $D_s K \ell$ candidates)
- Fit in 2D: (X_{mis}, m_{D_s}) for the D_s sample, and in 3D: (X_{mis}, m_{D_s}, m_{D_s}) for the D^{*}_s sample taking into account cross-feeds
- X_{mis} PDF for signal X_{mis} was parametrized by:

$$Ce^{-\left|\frac{X_{mis}-\mu}{\sigma}\right|^{n}}e^{-\alpha(X_{mis}-\mu)}$$

where μ (mean), σ (width), α (slope), *n* (steepness) fixed from the signal MC.

Fit projections for each variables are plotted in signal windows of the other variables.

2.05

2.11 2.12

m_{Ds}. [GeV]

			preliminary		
	Decay channel	$N_{D_{s}^{(*)}}$	Branching fraction	Significance	
-	$D_s K \ell \nu$	84 ± 24	$[3.0\pm1.2(stat)^{+1.1}_{-0.8}(syst)]\cdot10^{-4}$	3.4 <i>o</i>	
	$D_s^* K \ell \nu$	41 ± 22	$[2.9\pm1.6({\sf stat})^{+1.1}_{-1.0}({\sf syst})]\cdot10^{-4}$	1.8σ	
			$< 5.4 \cdot 10^{-4}$ CL = 90%		
	combined $D_s^{(*)} K \ell \nu$			6σ	

Consistent with the BaBar result

Systematic uncertainties					
Source	$\Delta \mathcal{B}(D_s)\%$	$\Delta \mathcal{B}(D_s^*)\%$			
Tracking, KID, LeptID	1	3			
${\cal B}(D_s o \phi \pi)$	(6			
signal efficiency	2	21			
$N(B^+B^-)$	2				
signal PDF (MC)	+27,-7	+17,-22			
BKG PDF (MC)	+6,-8	+20,-17			
BKG PDF (Data)	+5,-1	3			
cross feed	1	2			

Efficiency determined with data - reduced model dependence

- Observation of combined $B o D_s^{(*)} K \ell
 u_\ell$ modes with significance of 6 σ
- First time measured separately: $\mathcal{B}(B \to D_s \mathcal{K}\ell\nu_\ell) = [3.0 \pm 1.2(\text{stat})^{+1.1}_{-0.8}(\text{syst})] \cdot 10^{-4} (3.4 \sigma, \text{ first evidence})$ $\mathcal{B}(B \to D_s^* \mathcal{K}\ell\nu_\ell) < 5.4 \cdot 10^{-4} CL = 90\%$ (only a small part of $B \to X_c \ell \nu$)
- Model-independent analysis \Rightarrow first measurement of the $m(D_sK)$ spectrum pronounced peak at $\approx 2.6 GeV/c^2$

The results are still preliminary.

BACKUP

• Both distributions are dominated by a pronounced peak at $\approx 2.6 GeV/c^2$

³J. Wiechczyński et al. Phys. Rev. D 80, 052005 (2009)