

Methods of multiplicity reconstruction in heavy ion collisions in the ATLAS experiment

Bartłomiej Żabiński for the ATLAS Collaboration Institute of Nuclear Physics – PAN

Overview:

- Atlas detector
- Full reconstruction of tracks and pixel tracks
- Tracklets in the pixel detector
- Hit counting method

The ATLAS detector

MBTS (Minimum Bias Trigger Scintilator)

Full track method

Full Track reconstruction:

- required at least 1 hit in the Pixel detector and 5 hits in SCT
- full pattern recognition and momentum fit
- tracks reconstructed in the range $|\eta|$ <2.5
- unbiased reconstruction for $p_{-}>500$ MeV

Multiplicity reconstruction in p+p interactions

Pixel track method in p+p interactions p_{-} > 500 MeV

- Pixel tracks were reconstructed using the same inside-out track reconstruction, algorithm, but restricted to hits from the pixel detector.
- ✓ require at least 3 pixel hits.
- method suitable for an event sample with SCT high voltage switched off (unstable beam conditions)

The plots presents charged particle density as a function of beam energy. Charged particle multiplicity for energy 2.36 TeV was mesured using Pixel track method.

Comparison of pixel track & full track reconstruction methods

Tracklet method

- Vertex + 2 hits = tracklet
- Simplified method for heavy ion events.

- →Remove used clusters loop over B-layer and layer 2 → find tracklet 0-2
- →Remove used clusters loop over 1 and 2 layer \rightarrow find tracklet 1-2
- →Remove duplication due to geomery overlap and ganged pixels

Hijing, Pb+Pb, 5.5 TeV

Performance of tracklet method

Tracklet reconstrution efficiency and multiplicity resolution for $|\eta| < 1$

Hit counting method for Pb+Pb

The simplest method of estimation of charged particle multiplicty. Sensitive to particles with lowest p_{τ} .

Performance of hit counting method

Different colours of points represent different layers of pixel detector.

Line – $dN_{ch}/d\eta$ for primary particles

points – reconstructed $dN_{ch}/d\eta$

Summary:

- Various methods of multiplicity reconstruction have been presented.
- Multiplicity for p+p obtained using full track reconstruction or pixel tracks method.
- For heavy ion collisions simplified pixel tracklet method and hit counting method are developed.
 - suitable for events with high multiplicities
 - particles with low pT are included
- Precise measurement is possible for tracks with $p_{_{T}}{>}500~\text{MeV}$
- More flexible methods can be used to measure multiplicity of tracks with $p_{\tau}{>}100~\text{MeV}$
- In Pb+Pb collisions simplified methods (tracklets, hit counting) may provide

sufficiently good multiplicity estimates

Backup

Trigger efficiency and vertex reconstruction efficiency

 N_{Sel}^{BS} number of tracks in an event – without requirement of reconstructed vertex. Tracks requirements: $p_{T} > 500$ MeV, Pixel hit > 0, SCT hits > 5,

beam-spot position < 4mm.

(Physics Letters B 688 (2010) 21-42)

Track reconstruction efficiency for p+p at sqrt(s)=900 GeV

Systematic errors:

Trigger efficiency < 0.1%

- Vertex-reconstruction efficiency < 0.1 %
- Track -reconstruction efficiency 1.1%
- Different MC tunes 0.4%

(Physics Letters B 688 (2010) 21-42) 14

The trigger efficiency (a) and the vertex reconstruction efficiency (b) as a function of the number of selected vertex tracks nsel_BS at sqrt{s} = 7 TeV. The total uncertainties on each point are shown as shaded boxes, the vertical error bars represent the statistical uncertainty. Track reconstruction efficiency as a function of η (d) and p_{τ} (c) for sqrt{s}=7 TeV. The total uncertainties on each point are shown as shaded boxes, the statistical uncertainty. Track reconstruction efficiency as a function of η (d) and p_{τ} (c) for sqrt{s}=7 TeV. The total uncertainties on each point are shown as shaded boxes, the vertical error bars represent the statistical uncertainty. ATLAS-CONF-2010-024

The MC models do not reproduce the data for $p_t > 0.7$ GeV. Most significant difference is seen for the PHOTOJET generator.

(Physics Letter B 688 (2010) 21 - 42)

The spectrum is well described by ATLAS MC09 tune up to 2 GeV.

ATLAS-CONF-2010-024

p+p interactions at \sqrt{s} = 900 GeV and 7 TeV, tracks with p₁>100 MeV

Tracks requirements:

- Hit in the b-layer of the Pixel detector (when expected)
- Min. one pixel hit in any of 3 layers
- distance to primary vertex: $|d_0| < 1.5 \text{ mm}$ and $|z_0 \cdot \sin | < 1.5 \text{ mm}$
- 2 , 3 or 6 hits in SCT (for $p_1 > 100 \text{ MeV}$, $p_1 > 200 \text{ MeV}$ and $p_1 > 300 \text{ MeV}$ respectively).
- χ^2 probability > 0.01 for reconstructed tracks with p₁ > 10 GeV.

(ATLAS-CONF-2010-046)

17

Results from pixel track & track method

Average charged particle multiplicity per unit of rapidity for $\eta = 0$ as a function of the center of mass energy.(ATLAS-CONF-2010-046)