Electron performance with $J/\psi \rightarrow ee$ with the ATLAS detector

Timothée Theveneaux-Pelzer

on behalf of the ATLAS collaboration

LPNHE - Paris

Cracow Epiphany Conference - January 12th, 2011

Motivations

۲ Detector commissioning and calibration for electrons is made using $Z/\gamma^* \rightarrow ee$

Opposite sign di-electron invariant mass for an integrated luminosity of 10.1 pb-1 collected with a di-electron trigger with a transverse energy threshold of 5 GeV (ATL-COM-PHYS-2010-882)

Distribution of the p_T of the 2 electrons from $J/\psi \rightarrow ee$ on 14 TeV simulation (CERN-OPEN-2008-020)

• Direct $J/\psi \rightarrow ee$ decays provide a sample of electrons of low energy to study the detector performance

One year of data taking in ATLAS

- 45.0pb⁻¹±11% recorded by ATLAS
- Data taking efficiency almost 94% (with stable beam and full detector operational)

Integrated luminosity delivered by the LHC (green) and recorded by ATLAS (yellow) for $\sqrt{s}=7\,{\rm TeV}$

3/12

LPNHE

The ATLAS detector

Timothée Theveneaux-Pelzer (LPNHE - Paris)

January 12th, 2011

Trigaering low-p_T electrons

- ATLAS produces a very large amount of data : the data-recording rate must be reduced from 40MHz down to \sim 300*Hz*; to do this a 3 level trigger is applied : L1, L2 and Event Filter - L1 : hardware ; L2 & EF : High Level Trigger (HLT), software
- Brief trigger history : ۲
 - $\mathcal{L} < 10^{27} cm^{-2} s^{-1}$: minimumbias unprescaled. HLT applies no selection
 - $L > 10^{27} cm^{-2} s^{-1}$: minimumbias prescaled. other L1 triggers unprescaled
 - $\mathcal{L} \sim 10^{29} cm^{-2} s^{-1}$: lowest threshold L1 menus prescaled, HLT on
- A menu selecting events with at least one electron of $p_T > 5 GeV$ with tight identification cuts is used for the latest data periods (6Hz)

Unprescaled L1 rates as a function of the instantaneous luminosity. Minimum bias (MBTS) is scaled down by a factor of 20. Measurements were made with two colliding bunches in June 2010.

Electron reconstruction

For electron reconstruction, both the electromagnetic calorimeter and the tracker are used

- The reconstruction algorithm searches for seed energy clusters in the EM calorimeter with significant energy; seed clusters are a fixed-size rectangular window - E > 2.5GeV in a 3x5 (ηxφ) window - or the result or a nearest-neighbor clustering algorithm - aggregation of cells with E > 4σ_{noise} (latest used for early selection of J/ψ → ee with low statistics)
- It matches clusters with tracks fitted from the hits in the inner detector; the object is classified as an electron, photon or as converted photon
- Energy and position are calculated; energy is a weighted sum of the layer energies with corrections to take into account detector effects

Electron identification

- Use of variables to discriminate the electrons wrt. the backgrounds (hadrons and converted photons) build from all the inner detector sub-systems (Pixels, SCT and TRT) and from the all EM calorimeter samplings
- ۲ 3 standards levels of selection (loose, medium, tight): non-standard identification cuts used instead to extract $J/\psi \rightarrow ee$ signal : selection on hadronic leakage, shower shapes in 2nd and 1st sampling, number of tracker hits and a strict selection on fraction of high-level threshold hits in TRT

For illustration, Data/MC comparison with $1 n b^{-1}$ for inclusive electrons, pre-selected with $E_{T} > 7 GeV. |\mathbf{n}| < 2.0.$ cracks between calorimeters excluded (ATLAS-COM-PHYS-302)

TRT. loose selection

Electron pairs selection

- Using the first 77.8*nb*⁻¹ of data
- Selecting electrons with :
 - $|\eta| <$ 2 (no TRT beyond)
 - outside barrel/end-cap crack region (1.37 $< |\eta| <$ 1.52)
 - passing identification cuts
- Tag-and-probe analysis :
 - one tag with p_T(track) > 4GeV, E_{rawcluster} > 2.5GeV and stricter cut on high level threshold hits
 - one probe with p_T(track) > 2GeV
- Tag and probe have opposite charge
- Aim : fitting J/ψ mass peak, extracting the J/ψ kinematic variables and the shower shapes of the electrons, and compare the data to the simulation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

J/ψ mass fit

- There are different ways to measure the electrons momenta :
 - from track direction parameters and from cluster energy (Slightly low : calorimeter calibrations incomplete for very low energies)
 - from track parameters only (Slightly low : ignoring bremsstrahlung)
 - from the parameters of the track refitted to take bremsstrahlung energy losses into account (Gaussian Sum Filter¹)

Invariant mass of the electron pairs calculated from calorimeter energy and track direction, from track parameters only and from track parameters with refit to take bremsstrahlung refit, with 77.8*nb*⁻¹ (ATL-COM-PHYS-2010-518)

 J/ψ mass (PDG) : 3.096 \pm 0.011 GeV

1. R. Frühwirth, Comp. Phys. Comm. 100 (97); T. Atkinson, PhD thesis, U. Melbourne (06)

Kinematics of the J/ψ candidate

- Kinematics variables of the J/ψ candidate by taking pairs in the $2.5 < m_{ee}(track) < 3.2 GeV$ range with $f_1 > 0.15$
- The simulation is in agreement with the data given the uncertainties

Kinematic distributions of the electron pairs (ATL-COM-PHYS-2010-518)

Timothée Theveneaux-Pelzer (LPNHE - Paris)

January 12th, 2011

Shower shapes distributions

Distribution of four discriminating variables for the electrons of the J/ψ candidates (ATL-COM-PHYS-2010-518)

- Shower shape distribution obtained by maintaining the tag cut but removing the shower shapes cuts on the other electron (probe) - no background subtraction (~ 15% remaining)
- The peak provides a sample of electrons which are used to check the modelling of the electrons discriminating variables
- Some systematics effects emerge
- More studies are under way to properly extract shower shapes, with the full statistics
 - E_{ratio} : ratio of the difference of the 2 largest energy deposits in the first layer over the sum of these energies
 - f₁ : fractional energy in layer 1
 - R_η : ratio E_{3×7}/E_{7×7} (η×φ) for cells in the second layer
 - W_{tot}: shower width in the η direction for the first layer

LPNHE Liberatheter de physique machine et des handes tenergies

- ATLAS and LHC have performed well for the first year of collision data
- First analysis with 7 TeV data encouraging
- The results shown here take only a small part of the available statistics into account
- The $J/\psi \rightarrow ee$ give a sample of low- p_T electrons which can be used to study the detector performance
- Further studies are under way for shower-shapes extraction and efficiency measurement

· 비로 《 문 》 《 문 》 《 **대** 》 《 미 》

backup slides

13/12

Timothée Theveneaux-Pelzer (LPNHE - Paris) Electron performance with $J/\psi \rightarrow ee$ with the ATLAS detector January 12th, 2011

Di-electron Invariant Mass Spectrum (ATL-COM-PHYS-2010-882) :

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20101110/eeSpectrum/ ATL-COM-PHYS-2010-882/index.html

Expected performance of the ATLAS experiment (CERN-OPEN-2008-020) :

http://cdsweb.cern.ch/record/1125884

Electron plots for Summer conferences 2010 (ATL-COM-PHYS-2010-302) :

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20100602/

ATL-COM-PHYS-2010-302/index.html

Electron performance of the ATLAS detector using the J/psi -> e + e - decays(ATL-COM-PHYS-2010-518) :

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA/PublicPlots/20100721/

ATL-COM-PHYS-2010-518/index.html

◆□ → ◆□ → ◆三 → ◆三 → ◆□ → ◆○ ◆

Inner detector

- Transition Radiation Tracker : Straw tubes interleaved with polypropylene radiator (~ 80.10⁶ channels)
- Semi-Conductor Tracker : silicon microstrips layers (4 layers in barrel region)
- Pixel detector : high-resolution space points ; used for conversion rejection and flavour tagging

글 🛌 글 🖻

Electromagnetic calorimeter

Pb/Liquid Ar calorimeters with

Integrated luminosity for 7TeV collisions

Cumulative luminosity vs. day delivered by the LHC (green) and recorded by ATLAS (yellow) for $\sqrt{s} = 7$ TeV, in logarithmic scale

for $\sqrt{s} = 7 \, TeV$, in logarithmic scale