Performance and Results of the ALICE Experiment for Cosmic ray Physics

Martin Subieta for the ALICE Collaboration INFN Sezione di Torino Universita' Degli Studi di Torino

Epiphany Conference, Cracow, Poland

January 12th, 2011

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction Data Summary Results Summer 2009 Data Summary Results February 2010 Conclusions

1 Introduction

- ALICE Detectors Used
- Trigger Description

2 Data Summary Results Summer 2009

- Vertical Muons (Zenith Angle $0^o 20^o$)
- Charge Ratio μ^+/μ^-
- Horizontal Muons (Zenith Angle 70^o 80^o)
 MC Simulations

3 Data Summary Results February 2010

- Event found with very high muon multiplicity 182 μ
- $\bullet\,$ Second event found with very high muon multiplicity 89 μ

4 Conclusions

Introduction

Data Summary Results Summer 2009 Data Summary Results February 2010 Conclusions ALICE Detectors Use Trigger Description

Alice experiment at LHC

- ALICE located at 40 m underground
- 30 m of rock (molasse)
- Energy threshold $\sim 15~{\rm GeV}$ (near-vertical muons)

• • • • • • • • • • • •

Introduction Data Summary Results Summer 2009 Data Summary Results February 2010 Conclusions

Detectors used

ALICE Detectors Used Trigger Description

- Central detectors are used for detecting athmospheric muons
 - Trigger: ACORDE,TOF and SPD
 - Tracking: TPC
- Porward muon spectrometer is used to detect quasi-horizontal muons
 - Trigger: Muon trigger chambers
 - Tracking: Muon tracking chambers

Introduction Data Summary Results Summer 2009 Data Summary Results February 2010 Conclusions

ALICE Detectors Used Trigger Description

Description of the trigger

- ACORDE-60 scintillators, trigger coincidence: two scintillators (AMU)
- TOF cylinder of MRPC surrounding the TPC has two trigger types:
 - 1 pad up hit and 1 pad down and \pm 3 pads hits: TOF Single (OB3)
 - 4 pads everywhere: TOF Cosmic (OCP)
- SPD the two innermost layers of ITS, trigger when muon cross the two layers: (SCO)

Data sample summer 2009

# Run	Time	Rec.	# Events	# Events	Rate	Rate	Rate	# Interaction	#
	(n)	Pass2 [96]	OB3 OCP	OB3 OCP	MU > 0 OB3 [Hz]	OCP (Hz)	AMU > 0	Events	Multi - Mu Events
			AMU	AMU			[Hz]		mu > 3
83811	9.48	100	3422599	719832	20	1	0.03	152	152
83775	1.27	100	580925	148666	30.1	1.8	0.05	29	19
83802	1.05	90.6	382985	81830	20.5	1.1	0.03	18	15
84148	6.4	100	2720090	682773	28	1.6	0.04	103	98
84205	4.5	98.6	1681171	424331	24.7	1.4	0.04	84	76
84254	7	86.2	2330994	587554	22	1.3	0.03	99	81
84389	2.23	82.1	599723	151642	17.8	1	0.03	33	34
84420	5.12	97.6	1958776	495292	25.4	1.4	0.04	80	92
84455	4.43	98.1	1883982	478493	28.3	1.6	0.04	98	82
84479	1	96.1	377985	96761	25.4	1.5	0.04	19	18
84993	1.52	86.4	460389	120291	20.7	1.2	0.03	17	24
85024	1.35	89.7	493870	128554	24.9	1.4	0.04	18	18
85031	0.51	92.5	304872	79945	41	2.4	0.06	9	10
85032	0.43	94.1	14388	3759	2.3	0.13	0.004	1	0
85034	- 11	96.9	3906585	1023590	24.4	1.4	0.04	197	161
TOTAL	57.29		21119334	5223313				957	880

- The whole sample of "good quality" data collected in 2009 was analyzed
- 15 runs \rightarrow total time \sim 2.4 days live time

Vertical Muons (Zenith Angle 0^o-20^o) Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70^o-80^o)

- Tigger type \rightarrow TOF: OB3-OCP
- ACORDE: AMU, SPD: SCO
- Maximum high-multiplicity observed $\rightarrow 35\mu$

Vertical Muons (Zenith Angle 0^o-20^o) Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70^o-80^o)

Zenithal and azimuthal angular distributions

M. Subieta January 12th, 2011

Vertical Muons (Zenith Angle 0^o-20^o) Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70^o-80^o)

Uncorrected muon momentum distribution

- Pcov = P measurement of near-vertical muons
- Pcov → best way to measure the momentum
- It's calculated as an update of the covariance matrix parameters (Kalman filter algorithm)
- We estimated an error around 25-30% at P = 100 GeV/c

Vertical Muons (Zenith Angle $0^{o} - 20^{o}$) Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle $70^{o} - 80^{o}$)

Muon charge ratio μ^+/μ^-

CMS experiment

- 270 million of events recorded (October-November 2008) with B = 3.8 T
- P region < 100 GeV/c → charge ratio value of 1.2769±0.0025(stat)±0.0025(syst)
- In agreement with L3+C measurement \rightarrow 1.285±0.003(stat)±0.019(syst)

ALICE experiment

- 15 runs with Pass 2 ~ 5 million of events (~ 570888 vertical muon events)
- In P region < 100 GeV/c \rightarrow uncorrected charge value of 1.314

Vertical Muons (Zenith Angle $0^o-20^o)$ Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70 $^o-80^o)$

Data sample Aug.- Sep. 2009 (Muon Spectrometer)

Date	Run	Time[h]	Rate[Hz]	Events
24/08/09	81185	3	0.24	2560
"	81249	4	0.28	3604
"	81278	1	0.27	1036
25/08/09	81282	2	0.27	2108
"	81286	2	0.26	1882
"	81292	3	0.27	2544
"	81298	1	0.27	1310
**	81315	3	0.27	2625
"	81391	6	0.27	5761
"	81516	4	0.26	4157
26/08/09	81540	4	0.27	3807
"	81544	1	0.23	877
"	81545	4	0.25	339008
**	81683	5	0.25	4032
"	81771	3	0.25	2829
"	81812	3	0.24	2612
"	81818	5	0.28	5104
"	81827	4	0.28	4368
"	81937	4	0.27	4088
**	82118	2	0.27	1734
"	82164	1	0.28	1339
28/08/09	82172	8	0.27	8023
"	82281	3	0.25	2454
"	8233900	2	0.26	2255
"	82439	4	0.26	3622
29/08/09	82461	6	0.26	5476
"	82439	4	0.26	3622

Date Run		Time[h]	Rate[Hz]	Events
02/09/09	83745	6	0.22	5055
-	83814	2	0.22	1469
-	83822	6	0.26	6044
03/09/09	83845	4	0.26	3621
	83909	3	0.26	2420
	83997	5	0.28	4676
04/09/09	84039	5	0.28	4637
	84046	5	0.28	4630
-	84141	3	0.29	6922
05/09/09	84201	5	0.29	390088
	84209	3	0.30	3316
	84228	6	0.28	6625
	84392	6	0.29	5762
06/09/09	84447	8	0.27	8275
	84464	6	0.26	5857
	84585	8	0.27	7622
07/09/09	84643	8	0.27	7692
	84660	1	0.27	915
	84815	3	0.27	3237
	84854	4	0.26	3384
08/09/09	84888	7	0.27	7157
	85014	1	0.25	1153
	85021	6	0.24	5541
09/09/09	8503900	8	0.25	6778

- 51 Runs \rightarrow 104 chunks analyzed
- Total Time ~ 9 days (B=0.7T)
- 8192 events reconstructed

Vertical Muons (Zenith Angle $0^o-20^o)$ Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70 $^o-80^o)$

Data sample selected

Number of events selected with $\Theta Y > 0 \rightarrow 5876

イロト イ団ト イヨト イヨト

Vertical Muons (Zenith Angle $0^{o} - 20^{o}$) Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle $70^{o} - 80^{o}$)

Selecting events according zenith & azimuth angular efficiencies

High zenithal efficiency within range $[70^{\circ} - 80^{\circ}]$

High azimuthal efficiency within range $[85^o - 95^o]$

Vertical Muons (Zenith Angle $0^o-20^o)$ Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70 $^o-80^o)$

Spatial distribution at surface

Taking into account high zenith and azumithal efficiencies we loss ${\sim}47\%$ of the selected events

- Muon tracks were extrapolated up to the surface at 40 m
- We got a selected area \rightarrow 3900 m^2 at surface

< <p>> < <p>> < <p>> <</p>

• Slant depth \rightarrow from \sim 118 m to \sim 230 m (from surface till ALICE level)

Energy loss (MC simulations)

- $< \Delta Ploss >$ of P Simulated at surface P at muon chambers distribution
- $\bullet~$ Energy loss from \sim 50 to 80 GeV

Vertical Muons (Zenith Angle $0^o-20^o)$ Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70 $^o-80^o)$

- In Total 80000 μ were simulated from surface (P = 150 GeV/c & P = 100 GeV/c)
- below, the P loss distribution for zenith angle 76^o

Vertical Muons (Zenith Angle $0^o-20^o)$ Charge Ratio μ^+/μ^- Horizontal Muons (Zenith Angle 70 $^o-80^o)$

Uncorrected muon momentum distribution $(70^{\circ} - 80^{\circ})$

SURFACE LEVEL

Event found with very high muon multiplicity 182 μ Second event found with very high muon multiplicity 89 μ

Data sample february 2010

# Run	Time (h)	Rec. Pass2 [%]	# Events SCO AMU	# Events Mu > 0 SCO AMU	Rate Mu >0 SCO [Hz]	Rate Mu > 0 AMU [Hz]
109432	12.9	100	11070	6043	0.12	0.01
109477	3.4	100	3010	1653	0.12	0.01
109547	5.2	100	4601	2476	0.12	0.01
109576	2.3	100	2032	1075	0.12	0.01
109580	4.6	100	3732	1985	0.11	0.01
110499	4.8	100	2604	1869	0.10	0.003
110519	1.4	100	643	460	0.10	0.002
110520	7.3	100	4679	3305	0.12	0.004
110651	4.2	100	2610	1846	0.12	0.004
110865	6.3	100	13595	4353	0.19	0.004
TOTAL	52.4		48576	25065		

- Trigger type \rightarrow SPD SCO
- ACORDE AMU
- Time: ~ 2.2 effective days
- Very high multiplicity was observed 182 muons

M. Subieta

Event found with very high muon multiplicity 182 μ Second event found with very high muon multiplicity 89 μ

Very high muon multiplicity found (event: 6353)

Main characteristics

- $\bullet\,$ Time Run: 11519 \sim 1.04 h
- Chunk id \rightarrow 110519022.20
- $\bullet \ \# \ Tracks \rightarrow 459$
- Multiplicity (Pass 2) \rightarrow 182 μ
- # Muons with matched tracks (Up&Down) \rightarrow 121 μ

- Mean Zenith direction $\sim 40^{o}$
- Mean Azimuth direction ~ 212^o

Event found with very high muon multiplicity 182 μ

Spatial and momentum distribution

• Local Density of Muons (LDM) \sim 12 μ/m^2

크

Mean momentum ~ 123 GeV/c イロト イロト イヨト イヨト

Event found with very high muon multiplicity 182 μ Second event found with very high muon multiplicity 89 μ

Very high muon multiplicity found (event: 3723)

Main characteristics

- Time Run: 109547 \sim 5.2 h
- Chunk id \rightarrow
- # Tracks \rightarrow 182
- Multiplicity (Pass 2) ightarrow 89 μ
- # Muons with matched tracks (Up&Down) \rightarrow 42 μ
- Mean Zenith direction $\sim 41^o$
- Mean Azimuth direction $\sim 69^o$

Event found with very high muon multiplicity 182 μ Second event found with very high muon multiplicity 89 μ

Spatial and momentum distribution

Event found with very high muon multiplicity 182 μ Second event found with very high muon multiplicity 89 μ

Muon multiplicity & density related with primary energy

Figure 6.462. Comparison of the muon multiplicity distribution in ALKE in 30 days of data taking for pure proton and pure iron composition.

- Simulation muon multiplicity studies was done with primaries (p,Fe) within energy range $10^{12} < E < 10^{17} \text{ eV}$
- Maximum multiplicities observed \sim 100 μ for 30 live days of data taking
- Real data: local Density of Muons (LDM) \sim 12 μ/m^2 Ev: 6353 182 muons Eprimary $> 10^{16}$
- Real data: local Density of Muons (LDM) \sim 6 μ/m^2 Ev: 3723 89 muons $>=10^{16}$
- This kind of events are rare, with a frequency less than \sim 1 each 3 years

< <p>> < <p>> < <p>> <</p>

Conclusions

- We have analyzed all the cosmic data available, with the B = 0.5 T (Summer 2009-Feb. 2010).
- We can Study atmospheric muons with central detectors (vertical muons) as well as with the forward muon spectrometer detector (horizontal muons).
- It's possible measure: number of muons, momentum, charge, direction.
- Corrections in the measurement of the ratio μ^+/μ^- for vertical muons $(0^o 20^o)$ as well as for horizontal muons $(70^o 80^o)$ is in progress.
- Study and search events with very high muon multiplicity can be a test for hadron interaction models.