WINHAC++ The object-oriented Monte Carlo for the charged-current Drell-Yan process

Kamil Sobol

Institute of Physics, Jagiellonian University, Cracow, Poland

January 12, 2010

in collaboration with: W. Płaczek, A. Siódmok, P. Stecko

Outline

 Charged-current Drell-Yan Basics Multiphoton radiation

Kamil Sobol

Charged-current Drell-Yan – Basics

$$\Rightarrow \text{ Cross section - factorization formula:} \\ \sigma = \sum_{q_1,q_2} \int dx_a dx_b f_{q_1/h_a}(x_a, Q^2) f_{q_2/h_b}(x_b, Q^2) \sigma_{q_1q_2}(Q^2)$$

Kamil Sobol

Charged-current Drell-Yan – Multiphoton radiation

 $\Rightarrow O(\alpha)$ Yennie-Frautschi-Suura (YFS) exponentiated cross section:

$$\begin{aligned} \sigma_{YFS} &= \sum_{n=0}^{\infty} \int \frac{d^3 q_l}{q_l^0} \frac{d^3 q_\nu}{q_\nu^0} \rho_n^{(1)}(p_1, p_2, q_1, q_2, k_1, ..., k_n) \\ \rho_n^{(1)} &= e^{Y(Q, q_l; k_s)} \frac{1}{n!} \prod_{i=1}^n \frac{d^3 k_i}{k_i^0} \tilde{S}(Q, q_l, k_i) \theta(k_i^0 - k_s) \delta^{(4)}(p_1 + p_2 - q_l - q_\nu - \sum_{i=1}^n k_i) \\ &\times \left[\bar{\beta}_0^{(1)}(p_1, p_2, q_l, q_\nu) + \sum_{i=1}^n \frac{\bar{\beta}_1^{(1)}(p_1, p_2, q_l, q_\nu, k_i)}{\tilde{S}(Q, q_l, k_i)} \right], \text{ details in backup slides} \\ &\qquad (W. Płaczek and S. Jadach, Eur. Phys. J. C29, 325 (2003)) \end{aligned}$$

Kamil Sobol

Motivation – Physics

- Improve precision of W mass
 - \Rightarrow Consistency check of SM
 - \Rightarrow Better constraints on the Higgs mass
- Background for new physics searches
- "Standard candle" for other processes
- New resonances, e.g. W', KK ?

Motivation – IT

Why C++ ?

- HEP migrates to C++ (Pythia8, Herwig++, Sherpa, HepMC)
- Well known popular platform
 - \Rightarrow more developers
- Easier maintenance and development
 - \Rightarrow less code, more readable
 - \Rightarrow many tools (IDEs, modeling, etc.)

Closed - June 2010

- Born
- Multiphoton FSR (Final State Radiation) whitin O(α) YFS exclusive exponentiation scheme
- $\mathcal{O}(\alpha)$ electroweak (EW) corrections in FSR
- Parton Distribution Functions (PDFs) from LHAPDF
- FOAM used to generate 2-dim (x_a, x_b) distributions (based on PDFs)
- ⇒ Very good agreement with Fortran version (1.32) of WINHAC proved by series of high-statistics numerical tests on PC farm (see backup slides)

In progress (development almost completed)

- Standard event records
 - Les Houches Event Accord (LHE)
 - HepMC
- ISR QCD&QED Parton Shower & Hadronization by Pythia8 through LHE on event-by-event flow
 - FIFO pipes
 - Threads (Boost library)
- Optimization (thanks to P. Stecko)
 - \Rightarrow reached factor 1.4 (C++ vs Fortran)

To do:

- QED interferences with ISR
- Full $\mathcal{O}(\alpha)$ EW corrections
- Polarized W bosons

To do:

- $\mathcal{O}(\alpha^2)$ QED FSR
- New resonances: W', KK, ...
- Interface to *KRKMC* (ISR QCD Parton Shower, S. Jadach et al.)

Summary

- WINHAC++ under development:
 - \Rightarrow Stage 2 almost ready for testing
 - ⇒ At the end of Stage 3 WINHAC++ should cover WINHAC functionalities
 - \Rightarrow Stage 4 is open to new ideas
- New stable version should be released after Stage 2 tests
- Twin brother ZINHAC for neutral current Drell-Yan process (A. Siódmok, http://th-www.if.uj.edu.pl/ZINHAC)

How to get WINHAC++?

 \Rightarrow Releases:

http://th.if.uj.edu.pl/~sobol/WINHAC/releases/

⇒ Source repository & releases: http://winhacplusplus.googlecode.com/

Kamil Sobol

Backup – Numerical Tests

Proces		σ _{Born} [nb]	δ_{QED} [%]	δ_{weak} [%]
$u\bar{d} \rightarrow W^+ + X \rightarrow e^+ \nu_e, \mu^+ \nu_\mu + X$	W	15.00753135(2)	-0.0349(5)	-0.2837(7)
	W++	15.00753132(3)	-0.0345(5)	-0.2837(7)
$pp ightarrow W + X ightarrow e u_e, \mu u_\mu + X$	W	35.54376(5)	-0.0368(5)	-0.2837(7)
	W++	35.54384(5)	-0.0390(5)	-0.2830(7)
$pp \rightarrow W^- + X \rightarrow e^- \bar{\nu}_e + X$	W	7.574157(12)	-0.0352(6)	-0.2794(8)
	W++	7.574149(12)	-0.0344(6)	-0.2809(8)
$pp ightarrow W^+ + X ightarrow e^+ u_e + X$	W	10.197775(16)	-0.0349(6)	-0.2794(8)
	W++	10.197802(15)	-0.0369(6)	-0.2794(8)
$pp ightarrow W^- + X ightarrow \mu^- ar{ u}_\mu + X$	W	7.574150(12)	-0.0326(5)	-0.2880(7)
	W++	7.574116(12)	-0.0317(5)	-0.2887(7)
$pp ightarrow W^+ + X ightarrow \mu^+ u_\mu + X$	W	10.197765(16)	-0.0328(5)	-0.2880(7)
	W++	10.197749(15)	-0.0323(5)	-0.2885(7)
$pp \rightarrow W^- + X \rightarrow \tau^- \bar{\nu}_{\tau} + X$	W	7.572035(12)	-0.0793(5)	-0.2928(7)
	W++	7.572021(12)	-0.0796(5)	-0.2926(7)
$pp ightarrow W^+ + X ightarrow au^+ u_ au + X$	W	10.194957(16)	-0.0799(5)	-0.2928(7)
	W++	10.194945(15)	-0.0799(5)	-0.2938(7)

Table: Comparison – cross sections obtained by WINHAC and WINHAC++ (2 \times 10 9 events).

Kamil Sobol

Backup – Numerical Tests

Lepton transverse momentum (Born)

 $pp
ightarrow W^- + X
ightarrow e^- ar{
u}_e + X$ $pp
ightarrow W^+ + X
ightarrow e^+
u_e + X$

Kamil Sobol

Backup – Numerical Tests Lepton transverse momentum (YFS QED $\mathcal{O}(\alpha)$)

 $pp
ightarrow W^- + X
ightarrow e^- ar{
u}_e + X$ $pp
ightarrow W^+ + X
ightarrow e^+
u_e + X$

Kamil Sobol

Backup – YFS Form Factor

Gauge-invariant resummation of IR contributions:

$$Y(Q, q_l; k_s) = \underbrace{2\alpha \mathfrak{R}B(Q, q_l; m_{\gamma})}_{\text{virtual photons}} + \underbrace{2\alpha \tilde{B}(Q, q_l; m_{\gamma}, k_s)}_{\text{real photons}}$$

where:

$$\begin{split} B(Q,q;m_{\gamma}) &= \frac{i}{8\pi^3} \int \frac{d^4k}{k^2 - m_{\gamma}^2 + i\epsilon} \left(\frac{2q - k}{k^2 - 2kq + i\epsilon} - \frac{2Q - k}{k^2 - 2kQ + i\epsilon} \right)^2 \\ \tilde{B}(Q,q;m_{\gamma},k_s) &= -\frac{1}{8\pi^2} \int_{k^0 < k_s} \frac{d^3k}{k^0} \left(\frac{q}{kq} - \frac{Q}{kQ} \right)^2 \end{split}$$

Kamil Sobol

Backup – non–IR YFS functions

Zero real hard photons:

$$ar{eta}_0^{(1)}(\pmb{p}_1,\pmb{p}_2,\pmb{q}_l,\pmb{q}_
u) = ar{eta}_0^{(0)}(\pmb{p}_1,\pmb{p}_2,\pmb{q}_l,\pmb{q}_
u) \left[1+\delta^{(1)}(Q,\pmb{q}_l,\pmb{q}_
u)
ight]$$

$$ar{eta}_0^{(0)} = rac{1}{8s(2\pi)^2} rac{1}{12} \sum \left| M^{(0)} \right|^2 \leftarrow ext{Born-like contribution}$$

 $\mathcal{O}(\alpha)$ electroweak virtual corrections:

$$\delta^{(1)}(Q, q_l, q_\nu) = \underbrace{\delta^{(1)}_{EW}(Q, q_l, q_\nu; m_\gamma)}_{\text{SANC, D. Bardin et al.}} -2\alpha \Re B(Q, q_l; m_\gamma)$$

QED-like corrections only:

$$\delta^{(1)}(Q,q_l)_{QED} = rac{lpha}{\pi} \left(\ln rac{M}{m_l} + rac{1}{2}
ight)$$

Kamil Sobol

Backup – non–IR YFS functions

One real hard photon:

$$ar{eta}_1^{(1)}(p_1,p_2,q_l,q_
u,k) = rac{1}{16s(2\pi)^5}rac{1}{12}\sum \left| {\cal M}^{(1)}
ight|^2 - ilde{S}(Q,q_l,k) ar{eta}_0^{(0)}(p_1,p_2,q_l,q_
u)$$

$$ilde{\mathcal{S}}(Q,q_l,k) = -rac{lpha}{4\pi^2}\left(rac{Q}{kQ}-rac{q_l}{kq_l}
ight)^2 \leftarrow ext{soft-photon factor}$$

Kamil Sobol

Backup – matrix elements

$$\begin{split} \mathcal{M}^{(0)}(\sigma_{1},\sigma_{2};\tau_{1},\tau_{2}) &= \frac{1}{Q^{2} - M_{W}^{2} + iM_{W}\Gamma_{W}} \sum_{\lambda=1,2,3} \mathcal{M}_{P}^{(0)}(\sigma_{1},\sigma_{2};\lambda) \mathcal{M}_{D}^{(0)}(\lambda;\tau_{1},\tau_{2}) \\ \mathcal{M}^{(1)}(\sigma_{1},\sigma_{2};\tau_{1},\tau_{2},\kappa) &= \frac{1}{Q^{2} - M_{W}^{2} + iM_{W}\Gamma_{W}} \sum_{\lambda=1,2,3} \mathcal{M}_{P}^{(0)}(\sigma_{1},\sigma_{2};\lambda) \mathcal{M}_{D}^{(1)}(\lambda;\tau_{1},\tau_{2},\kappa) \end{split}$$

 $M \rightarrow$ Spin amplitudes in Weyl-spinor representation [cf. Hagiwara & Zeppenfeld, NP B274 (1986) 1]

Kamil Sobol

1

Cracow Epiphany Conference, 10-12 January 2011

18