Measurement of CP violation phase in B_s mixing from (pseudo)scalar-vector decays in LHCb experiment

Expected results from Monte Carlo study

On behalf of LHCb collaboration

Katarzyna Senderowska AGH University of Science and Technology, Cracow

Outline

1. Part I

- CP violation in B_s mesons decays
 - Current state of the measurements
 - Measurements of weak mixing phase in LHCb experiment

2. Part II

- $B_s^0 \rightarrow \chi_c^0 \phi$ event selection in LHCb experiment
- 3. Summary

CKM matrix and weak mixing phase

AGH

• Cabibbo-Kobayashi-Maskawa) matrix - transitions between quark families:

✓ In the Standard Model weak mixing phase ϕ_s = -2 β_s is related with B⁰_s oscillations ✓ In the same way B⁰_d mixing generates ϕ = -2 β

CP in B_s decays: <u>b</u> \rightarrow <u>ccs</u> quark-level process

- Very rare penguin decays: \rightarrow **CP** in decays neglected
- **No CP in mixing:** $\left|\frac{q}{p}\right| = 1, \frac{q}{p} = e^{-i\phi_M}$

CP in <u>the interference between decays</u> to the same final state <u>either directly or via mixing</u>:

$$\phi_{s} = \phi_{M} - 2\phi_{D}$$

• \$\phi_s\$ accessible directly from CP asymmetry:

$$A_{CP}(t) = \frac{\Gamma(B_s^0(t) \to f) - \Gamma(\overline{B_s^0}(t) \to f)}{\Gamma(B_s^0(t) \to f) + \Gamma(\overline{B_s^0}(t) \to f)} = \frac{-\sin(\phi_s)\sin(\Delta m_s t)}{\cosh(\frac{\Delta\Gamma_s t}{2}) - \cos(\phi_s)\sinh(\frac{\Delta\Gamma_s t}{2})}$$

- ϕ_s is accessible via B_s decays:
 - to CP eigenstates: $B_s^0 \rightarrow J/\psi\eta$, $B_s^0 \rightarrow J/\psi\eta'$, $B_s^0 \rightarrow \eta_c \phi$, $B_s^0 \rightarrow \chi_c \phi$, $B_s^0 \rightarrow J/\psi$ $f_o, B_s^0 \rightarrow D_s^+ D_s^-$
 - to the superposition of CP eigenstates: $B_s^0 \rightarrow J/\psi \phi$ golden channel for ϕ_S
- φ_s is the sensitive probe of New Physics:
 - ϕ_s very small in the SM: $\phi_{s(SM)}$ =-0.037±0.002 rad
 - Small theoretical uncertainty \rightarrow well predicted in the SM
 - New particles can contribute to the B_s-B_s box diagrams and significantly modify the SM prediction

$${\rm B_s^0} \to {\rm J}\!/\!\psi\phi$$

$$B^0_s \to \overline{B}^0_s \to J/\psi\phi$$

AGH Present state of the measurements

 ϕ_s value obtained by CDF and D0 from $B_s \rightarrow J/\psi \phi$ analysis shifted from the SM prediction

Louise Oakes, FPCP 2010

Rick Van Kooten, ICHEP 2010

Expected ϕ_s sensitivity from $B_s^0 \rightarrow J/\psi \phi$ in LHCb experiment

Reconstruction of $B_s^0 \rightarrow \chi_c \phi$ **decay**

• The estimated branching fraction for $B_s^0 \rightarrow \chi_c \phi$: 1.19·10⁻⁴

AGH

- The branching fraction of the full decay chain: 1.85.10⁻⁶
- The total number of
 B_s⁰→χ_cφ decays
 produced at nominal
 LHCb luminosity in one
 year: 336.8k

(L_{int} =2fb⁻¹, E_{CM} =5+5 TeV, σ_{bb} =434 µb)

Event selection

- To tune the selection criteria, the following Monte Carlo samples were used:
 - 1. Signal: $B_s^0 \rightarrow \chi_c \phi$
 - 2. Background: bb inclusive
 - The idea of selection: two-step procedure:
 - Cut-based selection to reject most background events & keep a relatively high efficiency for signal events
 - 2. Multivariate analysis (Fisher discrimination) in order to obtain best S/B ratio
 - Proper choice of discriminating variables sufficient to obtain the best performance

Cut-based selection

- Simple, rectangular cuts applied to signal and background samples:
 - to keep only signal-like events in background sample
 - to obtain a relatively high efficiency for signal events
 - Typical cuts used:
 - pions/kaons identification cuts
 - transverse momenta
 - > for ϕ , χ_c decay products >~ 0.4 GeV/c
 - > for ϕ , χ_c >~ 1 GeV/c
 - impact parameters
 - \succ B_s pointing angle
 - \succ χ^2 of vertices
 - invariant mass cuts

Fisher performance

- After cut-based selection the signal and background samples splitted randomly in half for training and testing
- Several best discriminating variables chosen for Fisher discrimination
 - transverse momentum, flight distance, pointing angle, vertex χ^2 of B_s
 - impact parameters of ϕ , χ_c
 - kaon identification

Selection efficiencies

 The total signal efficiency - number of reconstructed, selected and triggered signal events in 400mrad acceptance divided by the number of generated signal events:

The total signal efficiency consists of:

geometrical factor	selection/geo efficiency	trigger/sel efficiency	total efficiency
33.10 %	16.10 %	19.68 %	→ 1.05 %

- The resulting number of $B_s^0 \rightarrow \chi_c \phi$ events expected to be selected in the LHCb experiment in one year of data taking with the nominal LHCb luminosity: 3538
- The corresponding signal to background ratio after selection (without ε_{trg}) > 1.51 at 90% CL

Secondary vertex resolutions

Vertex resolution - difference between the reconstructed vertex position and the true position of the MC generated vertex

for events passing selection criteria, TMVA optimization and tight mass cuts

MC study

Now it's time to look at data...

what do expect to see at LHCb:

• So far (in 2010 data):

- L_{int} =0.038 fb⁻¹, E_{CM} =3.5+3.5 TeV, σ_{bb} =284 µb
- the number of $B_s^0 \rightarrow \chi_c \phi$ decays expected to be produced so far in LHCb: 4193

the resulting number of $B_s^0 \rightarrow \chi_c \phi$ events expected to be selected in LHCb: 44

- Next year in 2011 data:
 - L_{int} =1fb⁻¹, E_{CM} =3.5+3.5 TeV, σ_{bb} =284 µb
 - the number of $B_s^0 \rightarrow \chi_c \phi$ decays expected to be produced in LHCb: 110 k
 - the resulting number of $B_s^0 \rightarrow \chi_c \phi$ events expected to be selected in the LHCb experiment: 1159

- Potential for New Physics discovery in B_s⁰ decays
- CDF/D0: ϕ_s shifted from SM prediction (~1 σ)
- ϕ_s sensitivity from $B_s^0 \rightarrow J/\psi \phi$: $\sigma(\phi_s) \sim 0.07$ rad with 1fb⁻¹
- B_s^0 decays to pure CP eigenstates can improve ϕ_s sensitivity
- $B_s^0 \rightarrow \chi_c \phi$ seems to be a promising channel to improve ϕ_s sensitivity
 - ~1.16k events expected in 2011 data
 - ~3.5k events expected in one year at nominal LHCb luminosity
- $B_s^0 \rightarrow \chi_c \phi$ has never been observed
- Event selection based on Fisher discriminant \rightarrow good purity of signal decay (S/B > 1.51)

3 types of CP symmetry violation:

- 1. In decays (direct):
 - Difference in the decay rates for the process and its CP conjugation
 - Requires at least two amplitudes for the same process

- 2. In oscillations (indirect):
 - Mass eigenstates differs from CP eigenstates
 - X⁰→X⁰ and X⁰→X⁰ oscillations frequencies are not the same

q/p

 $= \bar{f}$

 \overline{A}_{f}

- 3. In the interference between decays and oscillations
 - Occurs when both the neutral meson and its antipartner decay to the same final state

$$\lambda = \frac{q}{p} \frac{A_{f}}{A_{f}}$$
$$|\lambda| \neq 1$$
$$\operatorname{Im}\{\lambda\} \neq 0$$

21

 $m_{\phi} = 1019.46 \text{ MeV/c}^2$, $m_{\chi_{c0}} = 3414.75 \text{ MeV/c}^2$, $m_{B_s^0} = 5366.3 \text{ MeV/c}^2$