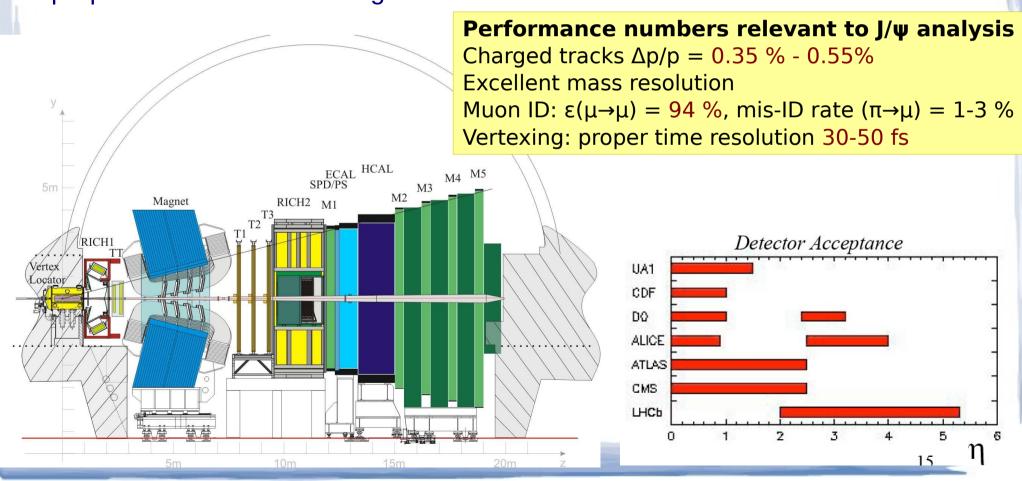
Epiphany Conference 2011 - Cracow (Poland) - 10-12 January 2011

Prompt J/Ψ and b→J/Ψ X production in pp-collisions at sqrt(s) = 7 TeV at LHCb

Emanuele Santovetti

Universita' di Roma "Tor Vergata" and I.N.F.N for the LHCb Collaboration

- The LHCb detector
- New J/ψ productions cross sections results (prompt and from B decay)
- Future prospects



Physics motivation

- **J/ψ produced in abundance at LHC:** enough statistics to study the production cross sections already with the first LHC data.
- Measurement very important:
 - J/ψ production mechanism not well understood, the color-octet model used to fit the CDF data doesn't describe the J/ψ polarization
 - → b \rightarrow J/ψ X decays fundamental for the LHCb core physics program
- 3 main sources of J/ψ :
 - direct production in pp collisions
 - feed down from heavier charmonium states ($\psi(2S)$, $\chi_{c...}$)
 - J/ψ from b-hadron decay chains

The LHCb detector

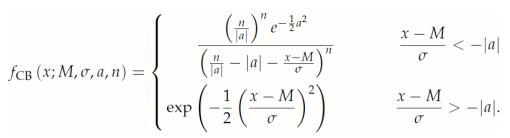
- Forward single arm spectrometer: large and correlated bb quark production in the forward region
- Coverage: 15-300 mrad
- Unique acceptance among the LHC experiments: can explore production properties in the forward region.

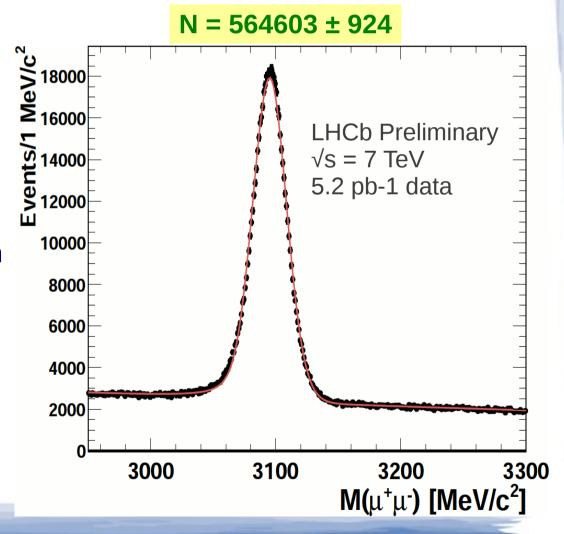
The J/w cross section

- Differential cross section $d^2\sigma/dp_t dy$ as a function of transverse momentum p_T and rapidity y
 - → 14 bins in pt: $0 < p_T < 14 \text{ GeV/c}$, 5 bins in y: 2 < y < 4.5
- Two separate measurements:
 - → prompt J/ψ: direct production in pp collisions or seed down from other charmonium states ($\psi(2S)$, χ_c ...)
 - J/ψ from B decay
- Use (5.2±0.5) pb⁻¹ of data collected at the end of September 2010 at LHCb, with pp collisions at center of mass energy of 7 TeV:
- Two different trigger conditions:
 - → 2.2 pb⁻¹ with HLT1 single muon line at full rate
 - → 3 pb⁻¹ with HLT1 single muon line pre-scaled (×0.2), to cope with instantaneous luminosity increase.

Trigger and selection

Trigger


LO	Single Muon	p _T >1.4 GeV/c	
	Di-Muon	p _{T,1} >0.56 GeV/c, p _{T,2} >0.48 GeV/c	
HLT1	Single Muon	Confirm L0 single Muon and $p_T>1.8$ GeV/c (Pre-scaled in Trigger 2 by 0.2)	
	Di-Muon	Confirm L0 Di-Muon and Mµµ>2.5 GeV/c2	
HLT2	Di-Muon	Mμμ>2.9 GeV/c2	

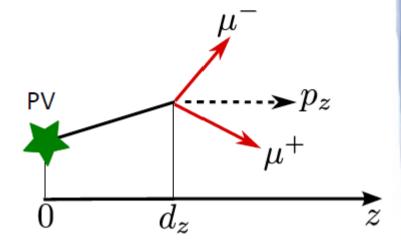

Offline selection

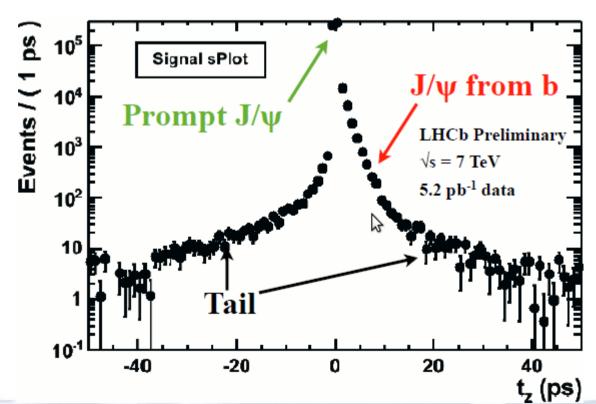
- Muon track well reconstructed and identified as muon
- Muon $p_{\tau} > 0.7 \text{ GeV/c}$
- Muon track fit quality: χ²/nDoF < 4
- J/ψ mass window: 0.15 GeV/c²,
- J/ ψ vertex fit quality: P(χ^2)>0.5%.

J/ψ invariant mass fit

- To take into account of the radiative tail, a <u>Crystal Ball</u> function is used to fit the signal
- Combinatorial background reasonably fit with a negative exponential
- Excellent mass resolution (~ 15 MeV/c² depending on bin)
- Same plot has been done for each bin of p_T and y to evaluate the number of J/ψ in each bin

J/ψ cross section evaluation

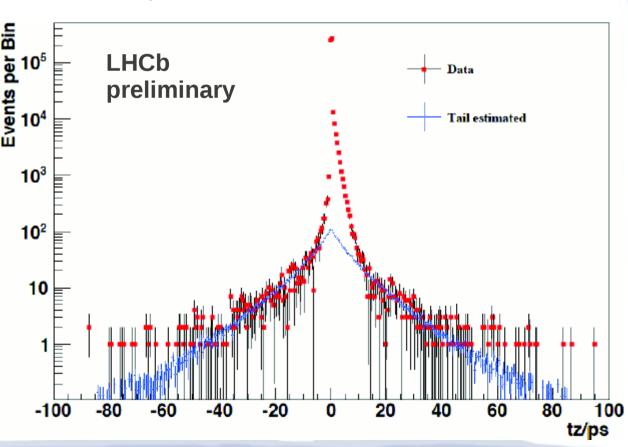

$$\frac{d^{2}\sigma}{dydp_{T}} = \frac{N(J/\psi \to \mu^{+}\mu^{-})}{\mathcal{L} \times \epsilon_{\text{tot}} \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \times \Delta y \times \Delta p_{T}}$$
where....


- $N(J/\psi \rightarrow \mu^+ \mu^-)$ is the number of observed decays in a certain p_{τ} and y bin
- L is the total integrated luminosity (5.2 pb-1)
- ε_{tot} is the total efficiency, containing acceptance, trigger, reconstruction etc...
- **B(J/\psi \rightarrow \mu^+ \mu^-)** is the J/ $\psi \rightarrow \mu^+ \mu^-$ branching ratio: (5.94 ± 0.06)%
- $\Delta y=0.5$, $\Delta p_T=1$ MeV/c are the bin sizes

Separation of prompt J/ψ and J/ψ from b

To distinguish prompt J/ ψ from b \rightarrow J/ ψ decays, we use the pseudo-proper time t_z

$$t_z(J/\psi) = \frac{d_z \times M_{J/\psi}}{p_z}$$

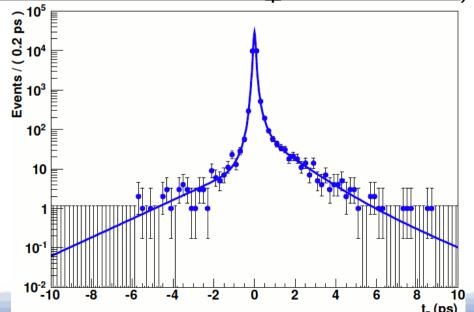

t_z tail

The very long symmetric tails (up to 40 ps) are due to a <u>wrong primary vertex (PV)</u> <u>association</u>. The shape of this tails is determined directly from data considering the PV of the next event, so completely uncorrelated (simulating a wrong association)

$$t_z^{
m next}(J/\psi) = \frac{\left(z_{J/\psi} - z_{
m PV}^{
m next}\right) \times M_{J/\psi}}{p_z}$$

- Data, side-bands subtracted
- "next event" method tail simulation

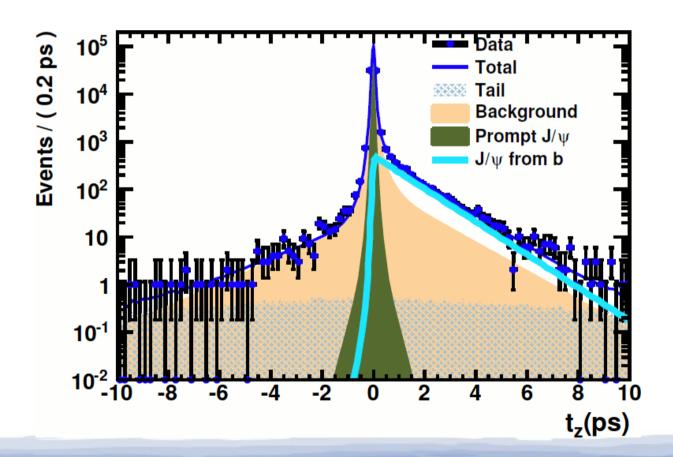
The "next event" method reproduces the tails very well


t, signal and background functions

To fit the t_7 distribution we used the following function:

Signal:
$$f_{\text{signal}}(t_z; f_p, f_b, \tau_b) = f_p \delta(t_z) + f_b \frac{e^{-t_z/\tau_b}}{\tau_b} + (1 - f_b - f_p) f_{\text{tail}}(t_z)$$

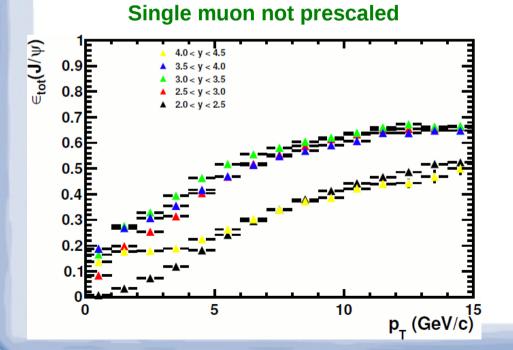
Prompt J/ ψ (delta) + J/ ψ from B (negative exponential) + t_z tail, all convolved with a resolution function (double Gaussian)

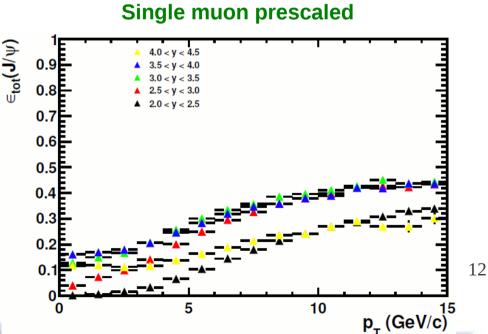

Background: Background contribution to the t_z distribution is parameterized with an empirical function, which is the sum of a delta function and five exponentials (three for positive t_z and two for negative t_z , the negative and positive exponentials), convolved with the sum of two Gaussian functions (the choice of the background function is motivated by the shape of the t_z distribution seen in the J/ψ mass sidebands).

t_z fit

A combined fit in t_z and mass is performed in every p_T and y bin to extract the number of prompt J/ ψ and J/ ψ from B decay

 t_z distribution with the fit result superimposed for the bin: 3 GeV/c < p_T < 4 GeV/c, 2.5 < y < 3.




Efficiency evaluation

• A sample of fully simulated inclusive J/ ψ is used to estimate the total efficiency ϵ_{tot} in each bin of p_T and rapidity. The total efficiency includes the geometrical acceptance ϵ_{acc} , the detection, reconstruction and selection efficiency combined in an efficiency term ϵ_{rec} and the trigger efficiency ϵ_{tri} :

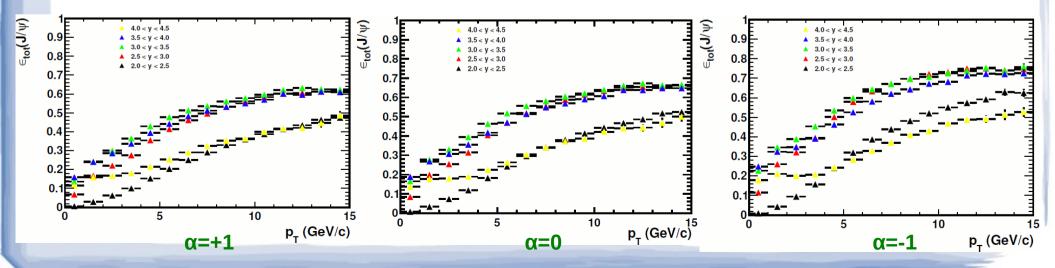
$$\epsilon_{\rm tot} = \epsilon_{\rm acc} \times \epsilon_{\rm rec} \times \epsilon_{\rm tri}$$

 Efficiencies are computed from Monte Carlo and are extensively checked on data, with control samples. Prompt J/ψ and J/ψ from B result to have the same efficiency (small differences are treated as systematic uncertainties)

Systematic effects

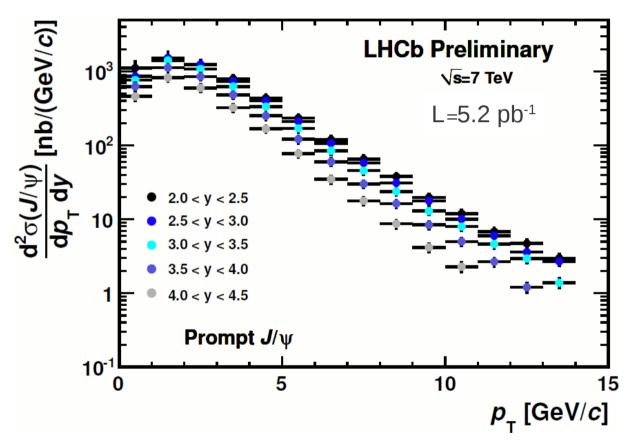
- A large number of systematic uncertainties have been studied in details on data and MC (trigger, global cuts, track chi2, vertexing, global fit)
 - The systematic uncertainty associated with the trigger efficiency is evaluated by comparing data with simulation. Trigger efficiency in data uses a trigger unbiased event sample, i.e., a sample in which the event would still be triggered if the J/Ψ candidate were removed (Trigger Independent of Signal, TIS)

Quantity	Systematic error	Comment
Trigger	1.7% to 4.5%	Bin dependent
GEČ	2 %	Correlated between bins
Muon identification	2.5%	Correlated between bins
Tracking efficiency	8%	Correlated between bins
Track χ^2	1%	Correlated between bins
Vertexing	1%	Correlated between bins
Mass fits	1%	Correlated between bins
Bin size	0.1% to 15%	Bin dependent
Inter-bin cross-feed	0.5%	Correlated between bins
		(not applied to the total cross-section)
Radiative tail	1%	Correlated between bins
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	1%	Correlated between bins
Luminosity	10%	Correlated between bins
t_z fits	3.6%	Correlated between bins
GEC efficiency of B events	2%	Applies only to J/ψ from b cross-sections
b hadronization fractions	2%	Applies only to extrapolations of
		$b\overline{b}$ cross-sections
$\mathcal{B}(b \to J/\psi X)$	9%	Applies only to extrapolations of
		$b\overline{b}$ cross-sections


Polarization effect

- The efficiency is evaluated from a Monte Carlo simulation in which the J/Ψ is produced unpolarized. However, studies show that both longitudinal and transverse J/Ψ polarization may lead to very different efficiencies.
- 3 extreme polarization cases have been studied, in the helicity frame, where the angular distribution of J/ Ψ muons is (integrating over the azimuthal angle φ):

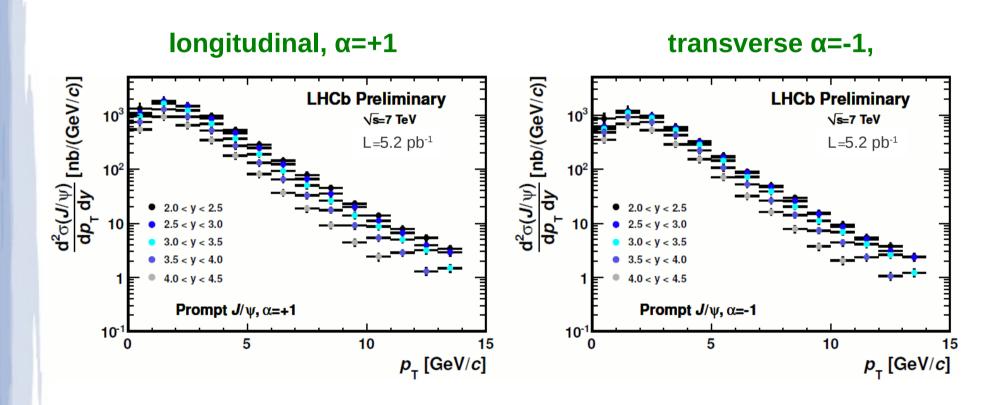
$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{1+\alpha\,\cos^2\theta}{2+2\times\alpha/3}$$
 \quad \text{a: polarization } \text{\theta*: polar angle}


• The plots indicate that the polarization significantly affects the acceptance and reconstruction efficiencies (up to 30%) and that the effect depends on p_T and y. Therefore, waiting for a polarization measurement, the prompt J/Ψ cross-section will be given separately for the three polarizations

Single muon trigger not prescaled

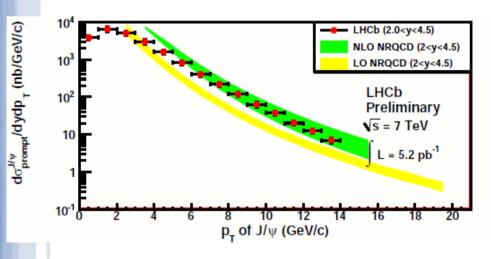
Results: Prompt J/ψ cross section

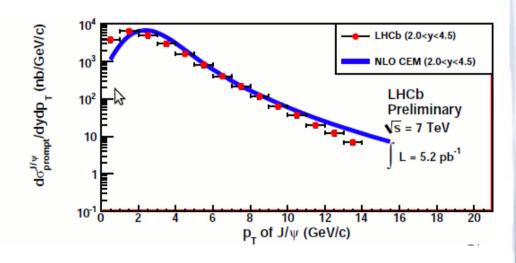
Differential cross-section for prompt J/ ψ in data as a function of $p_{_T}$ in bins of y , assuming that prompt J/ ψ are produced unpolarized.



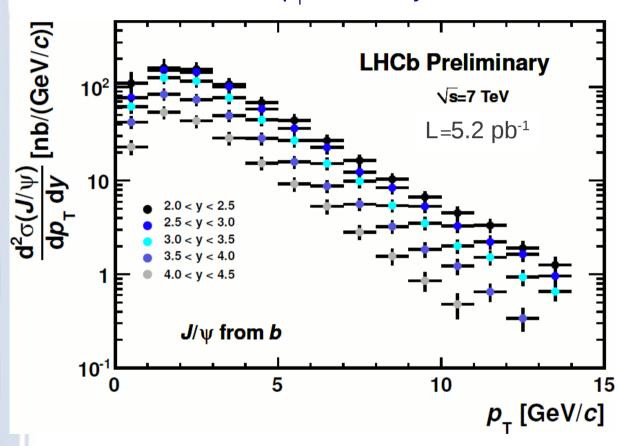
The integrated cross-section for prompt J/ ψ production in the defined acceptance, summing over all bins of the analysis, is:

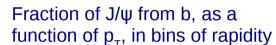
$$\sigma \text{ (prompt } J/\psi, p_{\text{T}} < 14 \text{ GeV}/c, 2 < y < 4.5) = 10.8 \pm 0.05 \pm 1.51^{+1.69}_{-2.25} \, \mu\text{b},$$

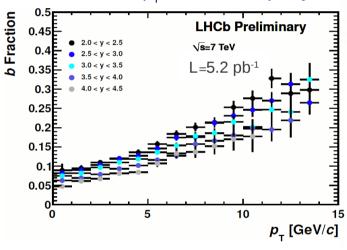

Results: Prompt J/ψ cross section


• Differential cross-section for prompt J/ ψ in data as a function of $p_{_T}$ in bins of y, for the two extreme polarization cases.

Comparison with theoretical models


- A comparison with three different models is proposed.
 - LO and NLO NRQCD (Non Relativistic QCD summing color Singlet and color Octet)
 - → NLO CEM (Color Evaporation Model)
- The NLO NRQCD model seems to fit data reasonably well in the high pT region, though the uncertainty is much large and there is a clear problem at low pT.





Results: J/ψ from B cross section

Differential cross-section for J/ψ from B decay as a function of $p_{\scriptscriptstyle T}$ in bins of y

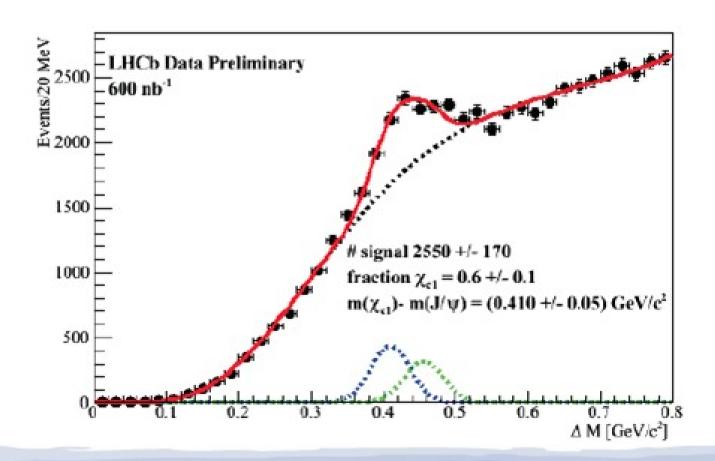
The integrated cross-section in the defined acceptance, summing over all bins of the analysis, is:

$$\sigma(J/\psi \text{ from } b, p_T < 14 \text{ GeV}/c, 2 < y < 4.5) = 1.16 \pm 0.01 \pm 0.17 \,\mu\text{b},$$

Cross section extrapolation

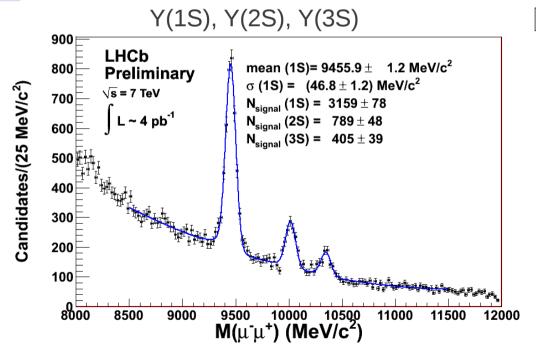
Using the LHCb Monte Carlo simulation based on PYTHIA 6.4, the measurement is extrapolated to the full angular acceptance.

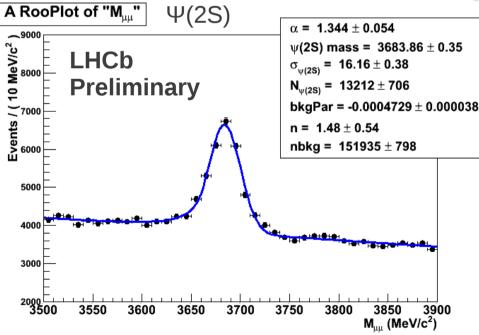
$$\sigma(pp \to b\overline{b}X) = \alpha_{4\pi} \frac{\sigma(J/\psi \text{ from } b, p_T < 14 \text{ GeV}/c, 2 < y < 4.5)}{2\mathcal{B}(b \to J/\psi X)}$$


where $\alpha_{4\pi}$ = 5.88 is the ratio of J/ ψ from b events in the full range over the number of events in the region 2 < y < 4.5. The results is:

$$\sigma(pp \rightarrow b\overline{b}X) = 295 \pm 4 \pm 48 \,\mu b$$

- First uncertainty is statistical and the second one systematic.
- The systematic uncertainty includes the uncertainties on the b fractions (2%) and on B(b \rightarrow J/ Ψ X). No additional uncertainty is assigned to the extrapolation factor $\alpha_{_{4\pi}}$ estimated from the simulation.
- The above result is in excellent agreement with that obtained from b decays into D⁰ $\mu\nu$ X [Phys.Lett.B694 (2010) 209]: $\sigma(pp \rightarrow bb \ X) = 284 \pm 20 \pm 49 \ \mu b$.


Prospects for future measurements


- <u>Polarization</u>: with full data sample, possible (ongoing analysis) to measure polarization of prompt J/ψ , in bins of $p_{\scriptscriptstyle T}$ and y.
- Measurement of χ_{c1} cross-section will be possible (will also allow to know proportion of J/ ψ from feed-down)

Prospects for future measurements

• Using the μ^+ μ^- decay channel, with the full data sample, LHCb will also measure other quarkonium states $\psi(2S)$, Y(1S), Y(2S), Y(3S)

Conclusions

- New measurements of the J/Ψ cross sections (prompt and from B decays) have been presented, with 5.2 pb⁻¹ of data at the LHCb experiment.
- Cross sections have been measured as a function of $p_{\scriptscriptstyle T}$ and y, extending the range of the first measurement presented
 - → ICHEP 2010: 14.2 nb-1 with only 10 p_{τ} bins and no bins in rapidity
 - Actual measurement 5.2 pb-1
 - Full statistics analysis (37 pb-1) ongoing
- Large uncertainty is due to unknown J/Ψ polarization: measurement of the polarization is ongoing to address this issue.
- Measurement of $\Psi(2S)$ and Y(1S), Y(2S), Y(3S) cross sections will allow to provide a complete picture of quarkonium production in the forward rapidity region.