Geometrical scaling at the LHC

Michał Praszałowicz Jagellonian University Kraków, Poland

Conclusions

Transverse momentum spectra at the LHC exhibit geometrical scaling

$$\frac{dN_{\rm ch}}{dydp_{\rm T}^2}(s,p_{\rm T}) = \frac{1}{Q_0^2}F(\tau)$$

Larry McLerran, Michal Praszalowicz: **Acta Phys.Polon.B41:1917-1926,2010**, e-Print:**arXiv:1006.4293** [hep-ph]; to be published in: **Acta Phys.Polon.B42**, e-Print:**arXiv:1011.3403** [hep-ph], Michal Praszalowicz: e-Print: **arXiv:1101.0585** [hep-ph]

Golec-Biernat Wüsthoff Model

 $\sigma_{dP}(r^2 Q_s^2(x)) \sim r^2 \alpha_{\rm s}(\mu_r^2) x G(x, \mu_r^2) \sim x^{-\lambda}$

Geometrical Scaling

$$\sigma_{\gamma^* p} = \int dr^2 \left| \psi(r, Q^2) \right|^2 \sigma_{dP}(r^2 Q_s^2(x))$$

$$\sigma_{\gamma^* p} = \sigma_{\gamma^* p} \left(\frac{Q_{\rm s}(x)}{Q} \right)$$

Saturated gluonic matter at the LHC

"Old", conventional physics with a new tool:

Saturated gluonic matter at the LHC

"Old", conventional physics with a new tool:

$$Q_s^2 = Q_0^2 (x_0/x)^{\lambda}$$

$$\frac{dN_{\rm ch}}{dydp_{\rm T}^2}(s,p_{\rm T}) = \frac{1}{Q_0^2}F(\tau)$$

multiplicity distribution is a universal function of scaling variable τ

 $\tau =$

Tribution
$$Q_{\text{sat}}^2(x) = Q_0^2 \left(\frac{1}{x_0} \frac{p_{\text{T}}}{\sqrt{s}}\right)^{-\lambda}$$

Inction
ble τ
 $\frac{p_{\text{T}}^2}{Q_{\text{sat}}^2(p_{\text{T}}/\sqrt{s})} = \frac{p_{\text{T}}^2}{1 \,\text{GeV}^2} \left(\frac{p_{\text{T}}}{\sqrt{s} \times 10^{-3}}\right)^{\lambda}$

note that for $\lambda = 0$ scaling variable $\tau = p_T^2$

sensitivity to power
$$\lambda$$

 $Q_{\text{sat}}^2(x) = Q_0^2 \left(\frac{1}{x_0} \frac{p_{\text{T}}}{\sqrt{s}}\right)^{-\lambda}$

$$\sigma_{E_1-E_2}^2 = \int_0^{\tau_{\text{max}}} \left(\frac{dN_{\text{ch}}}{d\eta d\tau} \Big|_{E_1} - \frac{dN_{\text{ch}}}{d\eta d\tau} \Big|_{E_2} \right)^2 d\tau$$

sensitivity to $\boldsymbol{\lambda}$

Geometric scaling of p_T distributions at SPS energies

effective growth of multiplicity is slower than λ

$$\lambda_{\rm eff} = \frac{2\lambda}{2+\lambda} < \lambda$$

Multiplicity from GS

Predicting multiplicity distributions for other energies: 2.76, 10, 14 etc. TeV

$$\frac{dN_{ch}}{d\eta d^2 p_{\rm T}}(p_T(W_1), W_1)$$

$$p_{\mathrm{T}}(W_2) = p_{\mathrm{T}}(W_1) \left(\frac{W_2}{W_1}\right)^{\lambda/(\lambda+2)}$$

Nuclear modification factor

Nuclear modification factor

Geometrical Scaling with $\lambda(Q^2)$

Geometrical Scaling with $\lambda(Q^2)$

$$p_{1\,\mathrm{T}}^{2} \left(\frac{p_{1\,\mathrm{T}}}{W_{1}}\right)^{\lambda(\alpha p_{1\,\mathrm{T}}^{2})} = p_{2\,\mathrm{T}}^{2} \left(\frac{p_{2\,\mathrm{T}}}{W_{2}}\right)^{\lambda(\alpha p_{2\,\mathrm{T}}^{2})}$$

for slowly varying λ we can solve above eq. bin by bin

Geometric Scaling with $\lambda(Q^2)$

$$p_{\mathrm{T}}(W_2) = p_{\mathrm{T}}(W_1) \left(\frac{W_2}{W_1}\right)^{\lambda/(\lambda+2)}$$

for slowly varying λ we can solve above eq. bin by bin

Geometric Scaling with $\lambda(Q^2)$

$$p_{\mathrm{T}}(W_2) = p_{\mathrm{T}}(W_1) \left(\frac{W_2}{W_1}\right)^{\lambda/(\lambda+2)}$$

for slowly varying λ we can solve above eq. bin by bin

Take multiplicity distributon at 2.36 TeV as a reference

$$0.9 \text{ TeV} \longrightarrow 2.36 \text{ TeV} \longleftarrow 7 \text{ TeV}$$

rescaled data at 0.9 and 7 TeV

CMS data at 2.36 TeV and rescaled data at 0.9 and 7 TeV

Summary

- 1. Geometrical scaling in variable $\tau = \frac{p_{\rm T}^2}{Q_0^2} \left(\frac{p_{\rm T}^2}{W^2}\right)^{\lambda/2}$ works very well for CMS and also UA1 $p_{\rm T}$ spectra with $\lambda = 0.27$ 2. As a consequence $dN_{\rm ch}/dy \sim W^{\lambda} \langle p_{\rm T} \rangle \sim W^{\lambda_{\rm eff}/2}$ where $\lambda_{\rm eff} = \frac{2\lambda}{2+\lambda} < \lambda$.
- 3. $p_{\rm T}$ dependent λ improves GS 4. $\lambda(p_{\rm T}) = \lambda_{\rm DIS}(p_{\rm T}/2)$

Summary

1. Geometrical scaling in variable $\tau = \frac{p_T^2}{Q_0^2} \left(\frac{p_T^2}{W^2}\right)^{\lambda/2}$ works very well for CMS and also UA1 p_T spectra with $\lambda = 0.27$ 2. As a consequence $dN_{ch}/dy \sim W^{\lambda} \langle p_T \rangle \sim W^{\lambda_{eff}/2}$

where $\lambda_{\text{eff}} = \frac{2\lambda}{2+\lambda} < \lambda.$

3. $p_{\rm T}$ dependent λ improves GS 4. $\lambda(p_{\rm T}) = \lambda_{\rm DIS}(p_{\rm T}/2)$

5. Why it does work?