Particle production studies at LHCb

B. Popovici IFIN-HH, Bucharest On behalf of LHCb Collaboration

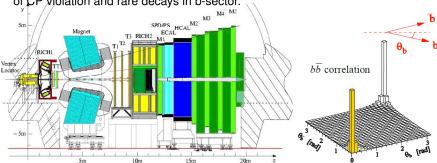
11.01.2011 Cracow Epiphany Conference On the first year of the LHC

Outline

Introduction to LHCb

 K_s^0 production cross section

Hadron production ratios $\bar{\Lambda}/\Lambda$, $\bar{\Lambda}/K_S^0$ production studies \bar{p}/p production ratio


Inclusive Φ cross section

Summary

The LHCb Experiment

Single arm spectrometer for New Physics through precision measurements of CP violation and rare decays in b-sector.

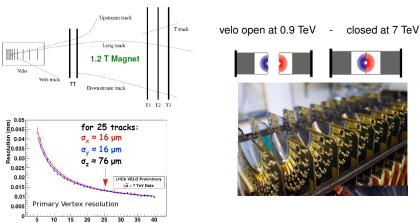
- It covers a unique range in pseudorapidity (1.9<η<4.9) complementary range to general purpose detectors.
- ▶ Fully instrumented^a in the forward region

Data taken with minimum bias triggers:

2009: Calo $(7\mu b^{-1})$

2010: 1 or more reconstructed

tracks $(14nb^{-1})$

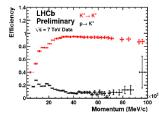

11.01.2011

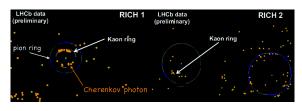
3 / 25

^aFor more information on detector and trigger see Patrizia de Simone's talk "Operation and Performance of the LHCb experiment"

LHCb Tracking

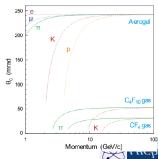
Excellent vertex resolution: VErtex LOcator, retractable device and momentum resolution TT, 3 Tracking station after the magnet



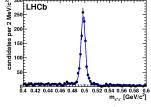

tracking: $\delta p/p \sim 0.45\%$ - reconstruction efficiency $\sim 95\%$ for $p > 5 \, GeV$. Data taken with two magnet polarizaties.

RICH Detectors

- 2 Cherenkov detectors, unique for the LHC experiments.
- Provide excellent Particle Identification (2-100GeV)
- Vital for K/π/p discrimination and good tagging efficiency



3 radiators needed RICH1 (2<p<60GeV):


- ▶ Aerogel, n ~ 1.03
- C_4F_{10} , $n \sim 1.0014$

RICH2 (p>20GeV)

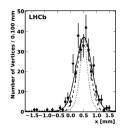
► CF_4 , $n \sim 1.0005$

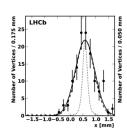
- First measurement for LHCb with 2009 pilot run data at 0.9 TeV
- $K_S^0 \to \pi\pi$ selection based on tracking and impact parameters
- Two selections with long and downstream tracks; prompt K_S⁰

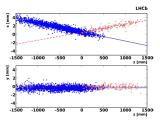
Long-tracks: $\sigma = 5.5 MeV/c^2$

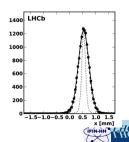
Downstream-tracks: $\sigma = 9.2 MeV/c^2$

$$\sigma = \frac{\textit{N}^{\textit{obs}}}{\epsilon^{\textit{trig/sel}} \epsilon^{\textit{sel}} \textit{L}_{\textit{int}}}$$

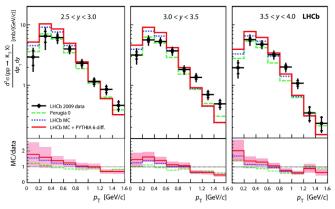

 N^{obs} -events observed; $\epsilon^{trig/sel}$ reconstruction and selection efficiency; ϵ^{sel} -trigger eff on selected events; L_{int} -integrated luminosity


Luminosity measurement


Direct measurement of luminosity using beam profiles estimated from vertices made by VELO tracks in beam-gas and beam-beam collisions.

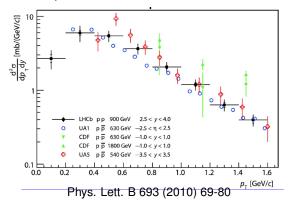

Most precise luminosity determination for 2009 run. Limited only by uncertainty on beam intensity.

$$\mathcal{L}=6.8\pm1.0\mu b^{-1}$$



K_s^0 production cross section

Phys. Lett. B 693 (2010) 69-80


Important input for hadronization models, measured in bins of y and p_T and compared to LHCb MC and Perugia 0 (Phys. Rev. D 82, 074018 (2010)) Good consistency with PYTHIA expectations p_T spectra slightly harder.

B. Popovici (IFIN-HH) Particle production at LHCb 11.01.2011

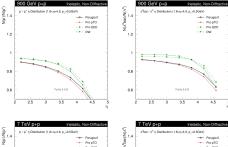
8/25

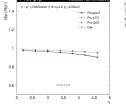
K_s^0 production cross section - 2009 Data

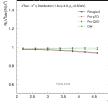
Comparison with other experiments

- First measurement of the cross section @ 0.9 TeV;
- \triangleright y and p_T range were extended;
- Main systematic contributions: luminosity ~ 12%, tracking efficiency ~ 10% (some bins)

Hadron production ratios

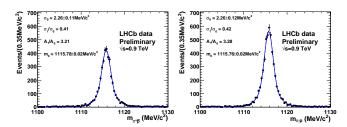

Motivation


- Baryon number transport $\bar{\Lambda}/\Lambda$, \bar{p}/p
- Baryon vs. meson suppresion in hadronisation $\bar{\Lambda}/K_S^0$
- MC tuning input


2 analyses:

- ► V⁰ ratios (tracking & vertexing only)
- $\triangleright \bar{p}/p$ (+ RICH PID)

2010 data @ 0.9 TeV and 7 TeV Use minimum bias data. No need to know absolute luminosity.

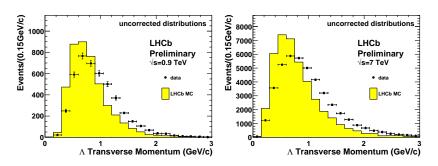

11.01.2011

P. Skands

http://home.fnal.gov/~skands

V⁰ analysis

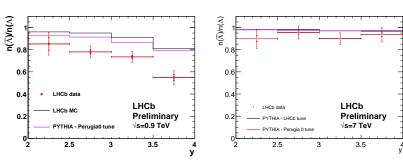
- Long tracks
- $ightharpoonup K_S^0$ and Λ selection based on impact parameters
- ► PV requirement ensures that only the V⁰ coming from non-diffractive events are kept
- Systematics uncertainties partially cancel
- 0.31nb⁻¹ @ 0.9 TeV; 0.2nb⁻¹ @ 7TeV



Visible asymmetry yields in raw data plots.

$\bar{\Lambda}/\Lambda$ analysis

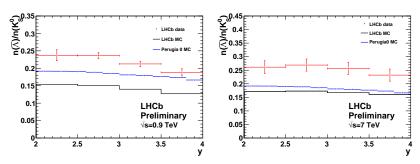
P_T spectra harder than predicted


CERN-LHCb-CONF-2010-011

B. Popovici (IFIN-HH)

Preliminary results - $\bar{\Lambda}/\Lambda$

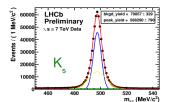
CERN-LHCb-CONF-2010-011

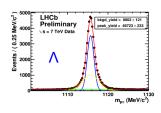


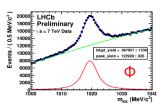
- Baryon transport higher than predicted at 0.9 TeV
- As expected, better agreement with the models closer to the beam in rapidity ((y_{beam} − y)@7TeV < (y_{beam} − y)@0.9TeV)

Preliminary results - $\bar{\Lambda}/K_S^0$

CERN-LHCb-CONF-2010-011

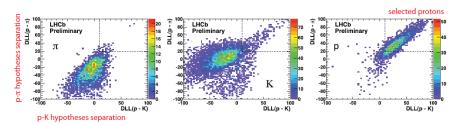



- ▶ Ratio of $\bar{\Lambda}/K_S^0$ higher than expectation at both energies
- Forward region not well described by hadronization models
- Sensitive observable for MC-tuning



Prompt \bar{p}/p production ratio

- Pure samples of protons selected with RICH particle ID
- Need to select samples of K and π to keep contamination under control
- Cuts tuned on MC but real efficiencies and misID are extracted from data using calibration samples of $\Lambda \to p\pi$, $\phi \to KK$, $K_S \to \pi\pi$

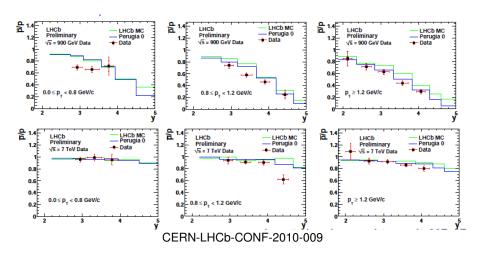


0.31 nb⁻¹ @ 0.9 TeV; 0.2 nb⁻¹ @ 7TeV

Prompt \bar{p}/p production ratio

Tracks from calibration samples demonstrate that protons are effectively selected Contamination from K and π is also quantified

Different interaction cross-sections in the material between p and \bar{p} , particulary at low momentum

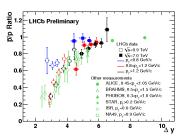

Therefore limit analysis to tracks with P > 5GeV and correct using MC

16 / 25

B. Popovici (IFIN-HH) Particle production at LHCb 11.01.2011

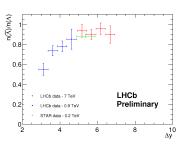
Preliminary results - \bar{p}/p ratio

- ▶ @ 0.9 TeV baryon transport higher than predictions and similar to $\bar{\Lambda}/\Lambda$
- @ 7 TeV Ratios become flatter as predicted by models; better agreement with MC


THCP

B. Popovici (IFIN-HH) Particle production at LHCb 11.01.2011 1

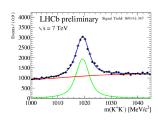
Baryon number transport comparison


Wide coverage of $\Delta y = y(beam) - y(\Lambda, p)$.

CERN-LHCb-CONF-2010-009

- Data in agreement with previous measurements for the same p_t region
- Indications of p_T dependence
- Limitation from the small sample used for calibration expected to drop

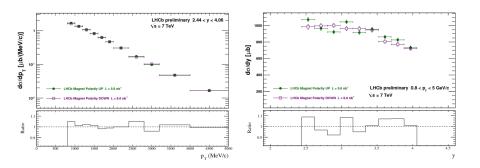
CERN-LHCb-CONF-2010-011


- Consistent with STAR measurement
- @ 0.9 TeV first time investigated this y region; @ 7 TeV - probes scaling violation
- Systematic uncertainties: from the difference between MC and data.

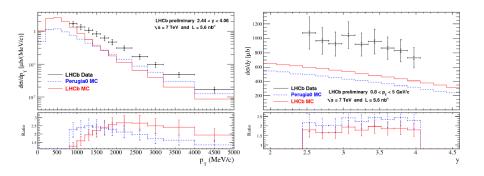
11.01.2011

Inclusive Φ cross section

Unique way to study strangeness production (the strange quarks pair)


- ▶ Discrepancies from MC seen by all major LHC experiments
- ► Test QCD fragmentation models in pp interactions in LHCb's kinematic region
- $\Phi \to K^+K^-$ candidates selection requires RICH PID information
- PID cuts efficiency estimated from data using tag&probe technique
- Same decay mode is used to test RICH system performance

- ▶ The main systematics uncertainties come from luminosity and tracking estimations
- ▶ Does not separate between diffractive and non-diffractive processes
- ▶ 14.3*nb*⁻¹ @ 7 TeV


Magnet polarities

- ▶ The LHCb magnet polarity can be reversed to minimize systematics
- ▶ PID needs to be calibrated independently
- Φ analysis done separately on both data sets

Preliminary Results - Φ

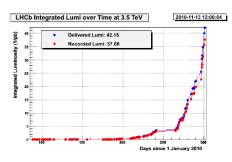
- ▶ Error bars show total uncertainties, including correlated systematics
- Φ production underestimated in the measured kinematic range by both PYTHIA tunings
- ▶ Harder p_T spectrum as compared to MC

Summary

LHCb has explored a unique kinematic region with first data

- All analyses limited by systematics
- Several analyses are investigating hadron production and will provide valuable input for QCD models and the LHCb MC retuning
- ▶ Proton analysis can be extended to provide further ratios π^-/π^+ , K^-/K^+ , etc.

Preliminary results compared to models indicate:


- Forward region not well described by models; harder P_T spectra
- Higher baryon transport
- ► The observed high value of baryon suppresion suggests underestimated strangeness production or total particle multiplicity in simulation

Back-up slides

year	luminosity	\sqrt{s}/TeV
2009	$6.8 \mu b^{-1}$	0.9
2010	$0.3nb^{-1}$	0.9
2010	$38pb^{-1}$	7.0

... 90% taking efficiency!

Uncertainties of K_S^0 cross section measurement

Source of uncertainty	uncorrelated	correlated
$Yields N_i^{obs}$		
- Data statistics	5-25%	
 Signal extraction 	1 - 5%	
 Beam-gas subtraction 		< 1 %
Efficiency correction $(\epsilon_i^{\text{trig/sel}} \epsilon_i^{\text{sel}})^{-1}$		
- MC statistics	1 - 5%	
- Track finding		6 - 17%
- Selection		4%
- Trigger		2%
$-p_{\mathrm{T}}$ and y shape within bin	0 - 20 %	
 Diffraction modelling 		0 - 1 %
 Non-prompt contamination 		< 1 %
 Material interactions 		< 1 %
Normalization $(L_{int})^{-1}$		
 Bunch currents 		12%
 Beam widths 		5 %
 Beam positions 		3 %
– Beam angles		1 %
Sum in quadrature	6 - 28 %	16 - 23%

- measurement statistics limited in some regions of phase space
- largest systematics from luminosity (knowledge of bunch currents)

