

Paweł Malecki (INP Kraków)

First Results from ATLAS on Production of W and Z Bosons in proton-proton Collisions at √s = 7 TeV

on behalf of the ATLAS collaboration

Introduction

Outline

- Motivation & predictions
- Data & MC samples

This talk is based on: http://arxiv.org/abs/1010.2130 For the W + jets results overview, see Sergei Chekanov's talk or ATLAS paper: http://arxiv.org/abs/arXiv:1012.5382

- Event selection & background estimation for W & Z
- Cross-section & asymmetry measurement with ~320 nb⁻¹
- Outlook newest results with larger data samples

Motivation & predictions

• Physics

- W & Z cross-section measurement in a previously unobserved energy region (known with ~4% precision from theory).

- Test of higher-order QCD corrections and Parton Density Functions
- Important background for New Physics searches (processes with di-leption or lepton + missing energy final states)

σ(W±)	σ(W+)	σ(W-)	σ(Z)
10.46 nb	6.16 nb	4.30 nb	0.99 nb

Commissioning & performance

- First pure hi-stat sample of isolated leptons with high transverse momentum:

- Identification, calibration, energy scales, efficiency with tag & probe
- Missing transverse energy studies

10 January 2011

ATLAS W/Z results

Data & MC samples

- ATLAS data from March to July 2010 with a total of 310 320 nb⁻¹
- Trigger:
 - Level 1 hardware based
 - Single lepton
 - Electrons: **10 GeV** cluster in electromagnetic LAr calorimeter
 - Muons: 6 GeV track in Muon Spectrometer.

A total of 6.5×10^6 and 5.1×10^6 events were collected in electron and muon channels for this analysis

- Electroweak processes generated with **PYTHIA** with MRST LO* PDFs and cross-section normalized to **NNLO**
- QCD dijet background determined from data (for some comparisons here a PYTHIA LO sample used with cross-section normalized to data)

Event selection & background estimation

Ingredients

- Electrons
 - reconstructed from EM-cluster with matched track
 - 3 sets of identification cuts: *loose* (bkg studies), *medium* (Z selection), *tight* (W selection)
- Muons
 - Combined muons use information from Muon Spectrometer matched with Inner Detector
 - Isolation required for efficient selection of signal events
- Missing transverse energy
 - Cell-based algorithm (with cluster filter)
 - In muon channel a correction for muon momentum added

Event selection – W[±] cross-section

Electron channel

- Electron within $|\eta| < 2.47$, without (1.37< $|\eta| < 1.52$), $p_{\tau} > 20$ GeV and passing tight ID
- $E_{T}^{Miss} > 25 \text{ GeV}$
- $-m_{\tau}^{>} 40 \, \text{GeV}$

#selected events: 1069 (in 315 nb⁻¹)

- Muon channel
 - Combined muon with $p_{\tau} > 20$ GeV within $|\eta| < 2.4$ with track isolation
 - $E_{\tau}^{Miss} > 25 \text{ GeV}$
 - $-m_{\tau}^{>} > 40 \, {\rm GeV}$

#selected events: 1181 (in 310 nb⁻¹)

 $m_T = \sqrt{2\mathbf{p}_T^e p_T^{\mathbf{v}} (1 - \cos(\phi^e - \phi^{\mathbf{v}}))}$

Event selection – Z

Electron channel

- Two oppositely-charged electrons $|\eta| < 2.47$ without(1.37< $|\eta| < 1.52$), $p_{\tau} > 20$ GeV and medium ID
- Invariant mass 66 < m < 116 GeV
 #selected events: 70 (for 316 nb⁻¹)
- Muon channel
 - Two combined muons with p_{τ} > 20 GeV within $|\eta|$ < 2.4 with track isolation
 - Invariant mass 66 < m < 116 GeV
 #selected events: 109 (for 331 nb⁻¹)

Background estimation

- Contributions from **electroweak** processes is estimated from Monte Carlo.
- Number of **QCD** events must be obtained with data-driven methods:
 - W \rightarrow ev: Template fit to E_{τ}^{Miss} distribution (see plot)
 - W \rightarrow µv: Isolation requirement -
 - relaxed versus full
 - Z→ee: Relaxed electron ID to get
 background template & fit
 - Z→µµ: Estimation based on MC:
 Negligible contribution expected (~10⁻²)

Event yields

	Total events	EW background events	QCD background events	S:B ratio
W→ev	1069	33.5 ±0.5±3.0	28 ±3±10	16
W→µv	1181	77.6 ±0.3±5.4	23 ±5±9	11
Z→ee	70	0.27 ±0.00±0.03	0.9 ±0.1±0.4	59
Ζ→μμ	109	0.21 ±0.01±0.01	0.04 ±0.01±0.04	435

Cross-section measurement

Cross-section measurement

• The cross-section is calculated as follows:

$$\sigma_{W/Z}^{tot} \cdot BR(channel) = \frac{N_{obs} - N_{bkg}}{A_{W/Z} C_{W/Z} L_{int}}$$

- A_{w/z} is the acceptance for W/Z-boson decays, defined as fraction of events satisfying geometrical and kinematical constraints at generator-level
- C_{w/z} denotes the ratio between number of events passing final selection and number of generated events within acceptance. It accounts for trigger, reconstruction and selection efficiency
- L_{int} is the total integrated luminosity of the sample

Cross-section measurement

	$W \rightarrow e \nu$		$Z \rightarrow ee$		$W \rightarrow \mu \nu$		$Z \rightarrow \mu \mu$	
	Central	Relative	Central	Relative	Central	Relative	Central	Relative
	value	uncertainty	value	uncertainty	value	uncertainty	value	uncertainty
C_W, C_Z	0.659	7.0%	0.651	9.4%	0.758	4.0%	0.773	5.5%

	MC	A 187+	A w-	A_W	A _Z	A_W/A_Z
		$W^+ \to e^+ \nu$	$W^- \to e^- \nu$	$W \to e \nu$	$Z \rightarrow e^+ e^-$	
Electron channel	PYTHIA MRST LO*	0.466	0.457	0.462	0.446	1.036
		$A_{W^{\dagger}}$	A_W	A_W	A_Z	A_W/A_Z
		$W^{+} \rightarrow \mu^{+} \nu^{-}$	$W \rightarrow \mu^- \nu$	$W \rightarrow \mu \nu$	$Z ightarrow \mu^+ \mu^-$	
Muon channel	PYTHIA MRSTLO*	0.484	0.475	0.480	0.486	0.988

10 January 2011

Cross-section - results

W cross-section in context of previous measurements

Z cross-section in context of previous measurements

Cross-section - results

Ratios of W+/Z and W-/Z cross-sections

Ratios of W(both signs)/Z crosssections

W⁺/W⁻ asymmetry

- Expected to be non-zero, increasing with η
- Is sensitive to valence quarks distribution
- Provides constraints on PDF's

$$A_{l} = \frac{\sigma(W+)A_{W+} - \sigma(W-)A_{W-}}{\sigma(W+)A_{W+} + \sigma(W-)A_{W-}}$$

Outlook

10 January 2011

ATLAS W/Z results

10 January 2011

ATLAS W/Z results

Summary

- Basic object reconstruction and identification procedures well understood
- Measurement of W \rightarrow Iv and Z \rightarrow II cross-sections and their ratios results consistent with expectations (first data points at 7 TeV !)
- First measurement of W charge asymmetry at 7 TeV
- Uncertainty already (at 320 nb⁻¹) dominated by systematics & lumi
- Higher statistics will also greatly reduce systematic errors on energy scale, reconstruction & identification efficiencies.
- Ready for $W \rightarrow \tau v \& Z \rightarrow \tau \tau$

BACKUP

Data & MC samples

Process	Generator	σ x BR [nb]	Order
$W \rightarrow ev$	ΡΥΤΗΙΑ	10.46 ± 0.52	NNLO
$W \rightarrow \mu v$	ΡΥΤΗΙΑ	10.46 ± 0.52	NNLO
$W \rightarrow \tau v$	ΡΥΤΗΙΑ	10.46 ± 0.52	NNLO
$Z \rightarrow ee$	ΡΥΤΗΙΑ	0.99 ± 0.05	NNLO
$Z \rightarrow \mu \mu$	ΡΥΤΗΙΑ	0.99 ± 0.05	NNLO
$Z \rightarrow \tau \tau$	ΡΥΤΗΙΑ	0.99 ± 0.05	NNLO
ttbar	MC@NLO	0.16 ± 0.01	NLO + NNLL
QCD dijets (e channel) p _T > 15 GeV	ΡΥΤΗΙΑ	1.2 x 10 ⁶	LO
QCD dijets (μ channel) p _T > 8 GeV	ΡΥΤΗΙΑ	10.6 x 10 ⁶	LO
bb (μ channel) p _τ > 18 GeV, p _τ (μ)> 15 GeV	ΡΥΤΗΙΑ	73.9	LO
bb (μ channel) p _T > 18 GeV, p_(μ)> 15 GeV	ΡΥΤΗΙΑ	28.4	LO

• W $\rightarrow \tau v$ contributes mostly via leptonic τ decay.

• In Z-processes one lepton may be lost outside of acceptance, generating, in addition, a missing transverse energy.

• In the ttbar process an electron from W decay in t \rightarrow Wb may be found.

QCD dijets contain genuine leptons from semi-leptonic heavy quark decays, misidentified hadrons, electrons from photon conversions. For the $Z \rightarrow \mu\mu$ channel, dedicated bb and cc samples were produced to increase statistics.

10 January 2011

ATLAS W/Z results

Electron reconstruction & identification

- A central electron candidate is seeded with **electromagnetic cluster** with $|\eta| < 2.47$ and $E_{\tau} > 2.5$ GeV in the second layer of EM calorimeter.
- An Inner Detector **track** needs to be loosely matched with the cluster of the electron candidate. Overall reconstruction efficiency: **97%**
- A *loose* identification involves examination of shower shapes in the 2nd sampling layer of LAr calorimeter and hadronic leakage.
- In *medium* selection the energy deposits in the first calorimeter layer are used, as well as track-quality variables (number of hits in Si, impact parameter) and more restrictive track-cluster matching. Relative efficiency: **94.3%** with **5.7x10³** rejection against QCD jets.
- The *tight* cuts require in addition E/p matching, a hit in first pixel layer for conversion rejection and e/π discrimination with TRT high threshold hits. Relative efficiency: 74.9% with 7.7x10⁴ rejection power.

Muon reconstruction

• **Standalone** muons are reconstructed based on Muon Spectrometer information only. A minimum of 2 track segments pointing to the interaction point are required. Track parameters are corrected for multiple interactions and energy losses in calorimeters (typically 3 GeV).

• **Combined** reconstruction utilizes also the information from Inner Detector combining standalone tracks with ID tracks either statistically or by refitting the whole track. Reconstruction efficiency of **93%** has been measured.

• Muon **isolation** cut is applied, with **98.4%** efficiency, rejecting **84%** of QCD background.

Missing transverse energy

- Missing transverse energy, E_{τ}^{Miss} computed with cell-based algorithm with **topological clusters**.
- Clusters constructed from cells with $E > 4\sigma_{noise}$ seed, $E > 2\sigma_{noise}$ secondary cells and all their direct neighbors (420).
- Energy measured with assumption of purely-electromagnetic nature of contributing processes and corrected for hadron response, dead material and out-of-cluster losses.
- Components of E_{τ}^{Miss} calculated as sums of energy components of cells belonging to clusters (an additional term is required in muon channel):

- In electron channel:
$$E_{x,y}^{Miss} = -\Sigma_i E_{x,y}^i$$

- In muon channel: $E_{x,y}^{Miss} = -(\Sigma_i E_{x,y}^i + \Sigma_i^{Muons} p_{x,y}^i)$

Event preselection - electrons

- Electron candidate within Inner Detector acceptance:
- |η| < 2.47
- and outside of calorimeter transition region between barrel and end-caps:
- |η| < 1.37 or |η| > 1.52
- Electron candidate cluster transverse energy E_τ > 20 GeV
- Loose identification
- Note: QCD scaled by 0.4 to match data
- Sample after preselection dominated by QCD events

Event selection – W (e channel)

• Fake leptons suppressed by adding tight identification requirements

Kinematics of selected candidates

Transverse energy of electron clusters after final selection

Transverse momentum of W candidates after final selection

ATLAS W/Z results

W – µv background

 $N_{\text{loose}} = N_{\text{nonQCD}} + N_{\text{QCD}}$ $N_{\text{iso}} = \epsilon_{\text{nonQCD}}^{\text{iso}} N_{\text{nonQCD}} + \epsilon_{\text{QCD}}^{\text{iso}} N_{\text{QCD}},$ Events without
isolation requirement

"Isolated" events

Known from Z-μμ data

Known from MC

Estimated with data sample of muons with $15 < p_{\tau} < 20 \text{ GeV}$ (strongly backgrounddominated)

Systematic uncertainties

• Systematic uncertainty on the C_w correction factor is a combination of terms from various contributions:

Parameter	$\delta C_W/C_W(\%)$	$\delta C_Z/C_Z(\%)$
Trigger efficiency	< 0.2	< 0.2
Material effects, reconstruction and identification	5.6	8.8
Energy scale and resolution	3.3	1.9
$E_{\rm T}^{\rm miss}$ scale and resolution	2.0	-
Problematic regions in the calorimeter	1.4	2.7
Pile-up	0.5	0.2
Charge misidentification	0.5	0.5
FSR modelling	0.3	0.3
Theoretical uncertainty (PDFs)	0.3	0.3
Total uncertainty	7.0	9.4
	8	

Electron channel

Parameter	$\delta C_W/C_W(\%)$	$\delta C_Z/C_Z(\%)$
Trigger efficiency	1.9	0.7
Reconstruction efficiency	2.5	5.0
Momentum scale	1.2	0.5
Momentum resolution	0.2	0.5
$E_{\rm T}^{\rm miss}$ scale and resolution	2.0	-
Isolation efficiency	1.0	2.0
Theoretical uncertainty (PDFs)	0.3	0.3
Total uncertainty	4.0	5.5

Muon channel

=

ATLAS W/Z results

