Cosmic ray inspired searches at the LHC

Searching for New States of Matter by Unconventional Signatures

Ewa Gładysz-Dziaduś IFJ PAN, Kraków

Cracow Epiphany Conference January 2011 **Exotic phenomena observed in cosmic ray experiments in the LHC energy domain**

• Centauro-related phenomena

-> Strange Quark Matter ?

- Strongly penetrating component
- Ring-like events -> Cherenkov gluons?
- Multi-photon events -> Magnetic monopoles?

Should we look for them at the LHC and in which way?

www.gsi.de/fair/experiments/CBM

MOTIVATION

Transition between QGP and ordinary hadronic matter is a crossover at small μ B, and is thought to become first order for μ B greater than that of a critical point in the phase diagram.

Strong fluctuations are expected in vicinity of the critical end-point

Rich structure of the phase diagram in regions of large µB and moderate T motivates a search in heavy ion collisions at the LHC for exotic phenomena observed in cosmic rays. First LHC results triggered interest in the cosmic-ray community

ALICE Coll., 2010, EPJ C68:345-354

- N_{ch} in pp collisions at midrapidity (-1<η<1) appears to be rising with energy (√s = 0.9; 2.36; 7 TeV -> E_{lab} ~10¹⁴-10¹⁶ eV) faster than expected from commonly used models –
- Shape of the multiplicity distribution is not reproduced well by standard simulations.

First LHC data confirm cosmic ray multiplicity observations ! -> should trigger interest of LHC community in studies of other cosmic ray phenomena

CERN Courier, June 2010 – Letters by A. Erlykin and A. Wolfendale

- N_{ch}at central rapidity is following a simple power law in energy
- power law exponent is the same as $\alpha = 0.11$ found at $E_{lab} \sim 1.5 \times 10^3 \cdot 1.5 \times 10^5$ GeV (*Erlykin, ICRC 1983*) and close to $\alpha = 0.13$ found at lower energies $E_{lab} \sim 10 \cdot 1.5 \times 10^3$ GeV (*Wdowczyk&Wolfendale, N.C. 1979*)

CENTAURO RELATED PHENOMENA

at Mt Chacaltaya (5200 m) and Pamir (4300 m)

CENTAURO SPECIES:

Abnormal hadron dominance

(in N and E), high p_T, low multiplicity

- CENTAUROS of original type (5 "classical" Chacaltaya + others) N_h ~ 100, P_T ~ 1.75 GeV/c
- MINI-CENTAUROS
- CHIRONS

Review:

E.G.-D. Phys. Part. Nucl. 34(2003)285

STRONGLY PENETRATING COMPONENT:

cascades, clusters, halos, frequently accompanying hadron-rich events

CENTAURO RELATED PHENOMENA – until 2003

- convincing evidence (Review: E.G.-D. Phys. Part. Nucl., 2003)
- unexplained by fluctuations in "usual" hadronic interactions and/or development of normal hadronic cascades (*Tamada*, *Ohsawa*...)
- many models (QGP, DCC, isospin violation, SQM ..., by Bialas, Bjorken, Morozov, McLerran, Rajagopal, Wilczek, Zelevinsky...) explain hadronrich composition
- Only STRANGE QUARK MATTER scenario (*Panagiotou, E.G.D., Wlodarczyk...*) offers simultaneous explanation of all Centaurorelated phenomena:

production of SQM fireball -> decay into baryons and strangelets
-> strangelets = strongly penetrating component

First **CENTAURO** accompanied by the **STRONGLY PENETRATING CASCADES**

PAMIR - thick Pb chamber

S = 9 m2, d = 60 cm Pb

59 layers (1cm Pb + X-ray film)

Hadron-rich event

Nh = 55, Ny = 74, ΣEh = 382 TeV, ΣEy = 305 TeV

Two long many-maxima cascades

no	sta	art	end	range	e no
	[c.	u.]	[c.u]	[c.u.]	peaks
197.0	8	12	121	109	11
748.0	1	48	121	72	5

passed and escaped through the bottom of the chamber

Cracow group, presented by E.G-D., ICRC, Paris, 1981

STRONGLY PENETRATING CASCADES in Pb CHAMBERS

STRANGELETS???

Cascades passed through the chamber practically without attenuation and revealed many-maxima character with small distances between humps

Penetrating halo in the center of family "Татьяна" – in thick carbon chamber (26 cm Pb + 4 C layers (320 cm)) -

Pamir Coll., Mt. Fuji Coll., Chacaltaya Coll., Nucl. Phys. B191(1981)1

CENTAURO FIREBALL EVOLUTION

 ^{56}A + ^{14}N

u

s (u s)

d (**d s**)

K+

CENTRAL COLLISION

at the top of the atmosphere

E_p ~ 1740 TeV

QUARK MATTER FIREBALL in the baryon-rich fragmentation region High μ_q suppresses production of (u u), (d d), favoring $g \rightarrow s \bar{s}$

> (pre-equilibrium) KAON EMISSION K⁺, K⁰ carry out:

K⁰ anti-strangeness, positive charge, entropy

u, d, s

SQM FIREBALL

Stabilizing effects of s quarks long lived state

EXPLOSION ~75 non strange baryons + strangelet (A ~ 10 -15)

Strangeness distillation mechanisn Estimates for "Chacaltaya" and LHC Centauro

- Energy density ~ (2.4) 3 - 25 GeV/fm³,
- Temperature T ~ (130)130 - 300 MeV
- Baryo-chemical potential μ_b ~ (1.8)0.9 - 1.8 GeV/fm³

sufficient for phase transition

possible STRANGELET formation

CNGEN

Centauro&Strangelet Generator

Phys. Rev. D45(1992)3134 Astr. Phys. 2 (1994)167; Astr. Phys. 13(2000)173; Phys. Atom. Nucl. 67(2004)396

1. NEW EXPERIMENTAL FINDINGS (= troubles)

2. NEW QUESTIONS – could any other objects (muons, magnetic monopoles, SUSY long lived particles) produce long-range many-maxima cascades?

> NEW IDEAS and NEW EXPERIMENTS

EMBARRASSMENT I -> **CENTAURO I PUZZLE** remeasurement -> NO CASCADES in the upper chamber ?

Kopenkin, Fujimoto, Sinzi, *Phys. Rev. D68*, -52007 (2003)

differences in arrival angles of cascades in upper (7 showers) and lower (43 showers) chambers -> no upper -lower correspondence ->
 usual atmospheric family that passed in the gap between chamber units ?

> Ohsawa, Tamada, Shibuya, Phys. Rev.C70, 074028 (2003)

- exclude the gap-passing hypothesis - reanalysis confirms the hadron rich composition of Centauro I - EVENT seems to be even MORE EXOTIC ?!

- > confirmation of the SQM scenario

> simple arguments against "passing in the gap" hypothesis:

many other hadron-rich events and related phenomena: mini-clusters, strongly penetrating component etc. (1997 - second clean Centauro, 2008 – reanalysis of old Centauro V -> "authentic Centauro") can not be explained by apparatus effects

- the same gap between blocks in all 6 layers of upper chambers?

EMBARRASSMENT II

- 2 strangelet candidates by AMS - 2002
- no strangelets at RHIC -2007

Maximum of strangelet distribution beyond geometrical acceptance
(~ 6.5 < η < 8.0 for neutral strangelets) of the detector used by *STAR Coll.*,

Phys. Rev. C76, 011901(R) (2007)

Negative results of strangelet searches – too forward rapidity region for strangelet formation ??

STRANGELETS -> NEW IDEAS

- STRANGELETs decay products of large quark globs present in the primary cosmic rays
 - confirmation of our SQM scenario

Ohsawa, Tamada, Shibuya, Phys. Rev. C70, 074028 (2003)

- STRANGELETS modified spectator matter
 - produced in peripheral nucleus-nucleus collisions

- enhancement of strange quarks after absorbing K⁻ produced in QGP Norbeck and Onel, J. Phys., Conf. Series 230 (2010)012044

this scenario explains the negative result of strangelet searches by STAR – strangelets should be looked for in peripheral (not in central) collisions

CENTAURO –

new explanations based on extra dimensions

Mini Black Holes

- Mironov, Morozov, Tomaras hep-ph/0311318, 2004 suppression of EM component in Centauros caused by evaporation of MBH (all particles of the SM are produced with equal probability) –> low photon/hadron ratio
- E. G.-D., Z. Wlodarczyk "Black holes versus strange quark matter", hep-ph/0405115, Nova Science Publishers, 2006 extremely high pT (~ 1 TeV) of MBHs decay products could be responsible for the group of particles with a little different arrival angles and explain the Centauro I puzzle ?

Why one associates CENTAUROS with **R – HADRONS** ?

Hunting gluinos at the Auger - Anchordoqui et al, Phys Rev D 77,023009,2008

R - hadron originates through confinement of a supersymmetric particle (long-lived gluino, squark) with quarks, anti-quarks, gluons

R-hadrons produce the peculiar air showers and CENTAUROS because

- energy loss is by a multiple low-inelasticity collisions of gluino with nucleons

- very low inelasticity implies that leading particle retains most of its energy all the way, while secondary particles produce an ensemble of mini-showers strung smoothly along the trajectory of the leading particle

- strongly penetrating clusters and cascades
- hadron-rich showers since at the detector level (~5200 m) the EM component of subshowers would be mostly filtered out, while the superposed hadronic showers would survive

NEW experiments

- Pamir Chacaltaya International Scientific Research Centre (ISRC) – established in 2009
- 2-storied deep X-ray chamber put under exposure -Ar-Arkhar, Pamir, 4400 m a.s.l. -to study a penetrating hadronic component, possibly caused by charm particles or strange matter (strangelets) – similar experiment as the CASTOR-CMS
- Proposal of global network of high altitude research stations

CENTAUROS and STRANGELETS at the LHC

where and how to look for them?

Search for Centauro-like phenomena

CENTAURO via event-by-event fluctuations – wide interval, preferably in the more forward region

- low multiplicity and characteristic particle composition
- high pT
- low Ny/Nh, ΣEy/ ΣEh
- characteristic η distribution

STRANGELETS

- *if produced via strangeness distillation mechanism detection by characteristic energy deposit in deep calorimeters, e.g. dedicated CASTOR/CMS calorimeter, ALICE ZDCs ??*
- *if produced at midrapidity via coalescence by decay pattern in central detectors, e.g. ALICE*

Preliminary suggestions for ALICE

CNGEN – Phys. Atom. Nucl. 67(204)396

High transverse momenta

CENTAURO T = 130 MeV , <pT> = 1.34 GeV/c T = 250 MeV, <pT> = 1.75 GeV/c

HIJING

<pT> = 0.44 GeV/c \approx 3-4 times smaller

than in Centauros

CNGEN – Phys. Atom. Nucl. 67(204)396

Multiplicity and particle composition in central Pb+Pb within the ALICE FMD acceptance

CENTAURO

HIJING

E. G.-D. – generation by CNGEN

no gammas and pions, mostly baryons

Preliminary suggestions Search for Centauros in ALICE PMD (~ 2.4 < η < 3.6)

CENTAUROS:

STRANGELETS and exotic di-baryons (MEMOs - $(\Lambda \Lambda)_{b}$ ($\Xi \Lambda$)_b...)

- if produced beyond midrapidity, in the high µb environment
 via strangeness distillation mechanism unusual shape of
 strongly penetrating showers CASTOR/CMS
- if produced at midrapidity by coalescence ALICE
 ALICE TP, 1995; Coffin et al., 2002 and 1997
- long-lived (τ > 10⁽⁻⁷⁾ s) (6u6d6s) and A = 10, 12, 16; Z = -4, -6, -6)
 via dE/dx (TPC) and/or time of flight (TOF)
- short-lived (weak decay τ ~ 10^{(-8) -} 10⁽⁻¹⁰⁾ s)
 Jaffe >H⁰ (2u2d2s, M ~ 2055-2231 MeV) -> decay pattern (TPC)

$$H^0 \to \Lambda^0 + p + \pi - \to p + \pi - + p + \pi$$

(η < **5.2**)

P. Gottlicher, CMS-CASTOR Coll., NIM A, 2010

CASTOR CALORIMETER

- Cherenkov light is generated inside the quartz plates as they are traversed by fast charged particles in the shower (shower core detector) developing in tungsten

- Azimuthal and longitudinal sampling sufficient for a study of structures in longitudinal development of cascades

- High depth for detection of strongly penetrating objects

Probability of CENTAURO and STRANGELET detection

- ~60 % of Centauro fb decay products and substantial part of strangelets within the CASTOR acceptance
- NOTE: Even very high energy strangelets (E ~ 30 TeV) are produced

E. G.-D., Acta Phys.Pol. B37 (2006) 153

Probability of STRANGELET detection

 $5.2 < \eta < 6.5$

Expected at LHC:

- Energy densities up to
 - $\epsilon \sim 30 \text{ GeV/fm}^3$
- $\Delta y_{stop} \sim 2 3.5$

HIJING, VENUS

• $\Delta y_{stop} \sim 2 - 3$

BRAHMS at RHIC

→ several to ~ 25% strangelets with energies E > 7 TeV (sufficiently high to be detected).

E. G.-D., Acta Phys.Pol. B37 (2006) 153

E. G.-D., Acta Phys. Polonica, 2006 P. Katsas Strangelet simulations in the CMS environment GEANT4-OSCAR Geometry:

- 1 layer: 5 mm W + 2 mm quartz plate ~2.37 X0
- 7 layers per readout unit
- 16 (in ϕ) x 18 readout channels
- Total depth: ~300 X0, 10.5 Aint

EVEN LOW ENERGY (~ 5 TeV) STRANGELETS MAY BE SEEN ABOVE THE BACKGROUND !

A. Angelis et al., EPJ direct, C9 (2000) 1.

Passage of strangelets through the calorimeter GEANT-3.21

STRANGELET SIGNALS clearly seen ABOVE the BACKGROUND

finer sampling -> more apparently seen hump structure

Configuration:

- 1 layer: 5 mm (10 mm) W + quartz fibres
- $8(\phi) x (8 EM + 72 H)$ segments

Depth: 760 mm W (effective depth ~300 X0, 11 Aint) ENERGY DEPOSITION PATTERN = NEW SIGNATURE of NOVEL STATES of MATTER

Different EXOTIC SPECIES produce characteristic signals

R-hadrons, Monopoles?

They can be distinguished one from another and from the "usual" events.

E. G.-D. "Nuclear Theory"21, Rila , 2002, p.152

EXOTIC EVENTS (signal + background) in comparison with HIJING

STRANGELETS in fragmentation region - ALICE, CMS - ZDCs

- > OBSERVATION: strongly penetrating component in cosmic rays observed in very forward region
- IDEA: modified spectator matter –
 enhancement of strange quarks after absorbing K⁻ produced in QGP
 -> low Z/A -> high signal in neutron ZDC Norbeck and Onel, Jamaica 2010

Look at:

- peripheral nucleus-nucleus collisions
- **high signal in neutron ZDC** (higher than expected from impact parameter determined by other methods)
- deviation from expected ratios of signals from proton to neutron ZDCs
- unexpectedly high energy fraction in one tower of the neutron (or proton) ALICE ZDC

Other exotic objects at the LHC

REMARKS

Suggested new signature

- R-hadrons
- Monopoles
- Cherenkov gluons

Standard signatures of R – HADRONS at the LHC

- unstable (τ~picosecond) -> decays before first sensitive layers of detectors
 -> recognized by secondary vertex technique (ATLAS, CMS)
- (meta) stable τ long enough to traverse a (part) detector
- dE/dx depends on the mass and the charge -> striking difference between Rhadrons and ordinary particles (ALICE)

A. Dobrin, P. Christiansen, arXiv: 0910.0759

- → Time of flight high mass (~ TeV) and non-relativistic R-h -> longer time to reach outer detectors than that for usual particles (ATLAS, CMS, ALICE)
- → Charge exchange R–h, as a composite particle can change sub-structure through nuclear interactions in a detector -> charge variation $\Delta Q = 1, 2$ (charge flip) -> changing curvature of the trajectory

NEW suggested signature of R-h – energy deposition pattern in deep calorimeters

Successive hard interactions of heavy R-h (tennis ball among ping-pong balls) -> single cascades strung along R-h trajectory -> shape of transition curve depends on the absorber

• **air** – **usual** -**h** (λ /X0) \approx (90/36.66)=2.45

R-h (λ /X0) \approx (47/36.66)=1.28

small distances between consecutive
[Anchordoqui
interactions Δt ≈1.3X0 ->
flat transition curve

• **Pb** – usual -h $(\lambda/X0) \approx (194/6.37)=30.4$

R-h (λ /**X0**) \approx (111/6.37)=17.4

Δt ≈ 17.4 X0 comparable with longitudinal extent of cascade -> possible separation of single cascades -> many-maxima transition curve

- possibility to observe R-h at LHC in thick longitudinally segmented calorimeters (CASTOR/CMS)
- experimental many maxima cascades in Pb: $\Delta t \approx 10.4 \text{ X0}$

How can we search for monopoles at LHC?

1. STANDARD METHODs - abnormally high ionization combined with

• trajectories, in solenoidal magnetic fields, dramatically different than for ordinary charged particles – *no curvature in r-\phi plane*

it needs: a dedicated highly ionizing particle trigger, large pulses in TOF, special reconstruction of monopole candidates

2. suggested NEW SIGNATURE ->

- monopoles tend to be swept out along the beam pipe
- energy gain $W_m/LB = nx20.6 \text{ GeV } m^{-1}T^{-1}$

-> strong signal in one tower of one ALICE ZDCs or in CMS CASTOR calorimeter

-> characteristic (many-maxima) showers in deep longitudinally segmented calorimeters with heavy absorber Monopole radiation length $(X0)_{mon}$ is longer E.G.-D. preliminary than (X0) for electrons

Bremsstrahlung energy loss – *Amaldi; Cabrera, Trower* (for $\gamma > 20$)

 $(dE/dx)^{mon}/(dE/dx)^{e} = (X0)_{e}/(X0)_{mon} = 2(ng/e)^{4} (me/mg)^{2}$

(e.g.

CHERENKOV GLUONS – inspired by cosmic ray "ring-like" events

- First ideas – pre-QCD times when pions were quanta of radiation – e. g. *Ivanenko, Gurgenidze, 1949; Czyz, Glashow, 1960*

 - Renaissance – RHIC and LHC era - many papers by I. Dremin, e.g. Heavy ion collisions at the LHC, Last call for predictions, 2007 Int. J. Mod. Phys. A22: 3087,2007

Cherenkov gluons can be emitted (if n>1) in hadronic collisions at the cone surface at the angle θ_c to the momentum of parton-emitter in the rest system of the infinite medium:

 $\cos\theta_{c} = 1/(\beta n) \implies$ "Cherenkov rings

the ring-like two-dimensional distribution of particles must be observed in plane perpendicular to the momentum of the parton Diagnostic tools of the nuclear medium properties: jet quenching, elliptic flow, suppression of high pT

Cherenkov gluons are the other diagnostic tool of the partonic properties of matter

RHIC

Dremin, arXiv:0910.0099,2009

Nucl. Phys. A785(2007)365

- The refractive index from the distances between the peaks:
 n ≈ 2.5 3 (STAR, PHENIX) -> high density medium a liquid
- The density of partons -> $v \approx 30$ (per nucleon)
- The energy loss of Cherenkov gluons -> $dE/dx \approx 1 \text{ GeV/fm}$
- The free path length of gluons $\approx 7 \times 10^{(-13)}$ cm (from the height of the peaks (ring width))

Cosmic Rays (LHC ?)

 $n \approx 1$ -> more transparent medium – a gas

Stratospheric event at 10¹⁶ eV nuclear and X-ray film detector at the balloon

2 rings with r1 = 1.75 cm and r2 = 5 cm are produced by forward and backward moving (in c.m.s) partons tg θ = r/H; $\Delta \eta$ = -ln(r1/r2); tg $\theta_c/2 \approx \gamma \theta_t$ θ_{1t}/θ_{2t} = r1/r2 = tg($\theta_{1c}/2$)/tg ($\theta_{2c}/2$) = 0.35 OLD 4 events (~ 1000 TeV) PAMIR – thick Pb chamber Krakow group ICRC Paris 1981

(Hul) P/NP

35

30

 $< \ln R > = 2.47$

 $\sigma = 0.72$

Photons

We are waiting for LHC results and a solution of cosmic ray puzzles

BACKUP

Distances between humps and energy ratios of cascades produced by unstable strangelets (bundle of 7 neutrons) are described by simulations.

- Long-range many-maxima cascades could be the result of penetration of strangelets through the apparatus
- SQM scenario could explain different forms of strongly penetrating component (single cascades, mini-clusters, halo)

E. G.-D. and Z. Wlodarczyk, J. Phys., Nucl. Part. Phys. G23 (1997)2057

Anomalous hadron dominance confirmed in simulations

Also M. Tamada - 4 different models of AA interactions (VENUS, QGSJET, HDMP, UA-5) + CORSIKA code for simulations of development of hadron-electromagnetic cascade in the atmosphere

Is the strongly penetrating component a sign of strangelet passage through the matter? Simulation of STRANGELETS

• UNSTABLE ⇒ collimated beam of neutrons (mini-cluster)

Main decay channel -> neutron emission in strong interactions (in practice, at interaction point , $\tau_0 \sim 10^{-20}$ s)

•

METASTABLE ⇒ successive evaporation of neutrons in weak decays during their passage through the apparatus

Because of flavour changing , $(s+u \leftrightarrow u+d)$ process is much slower than strong decay into neutrons

STABLE ⇒ lifetime long enough to pass through the apparatus without decay
 (τ₀ > 10⁻¹⁰ s in cosmic ray expts, and > 10⁻⁸ s for CASTOR)

Long τ_0 in weak radiative $(d+u \leftrightarrow s+u+\gamma)$ and leptonic decays $(d \leftrightarrow u+e^++v_e)$ $s \leftrightarrow u+e^++v_e$, caused by flavour changing and 3-body phase space

E. G.- D., Z. Włodarczyk, J. Phys. G23(1997)2057

• **Strangelet** is an object with the radius:

$$\mathbf{R} = \mathbf{r}_0 \, \mathbf{A}_{\text{str}}^{1/3}$$

• Rescaled radius

 $\mathbf{r}_0 = \{3\pi / [2(1 - 2\alpha_c / \pi)(\mu^3 + (\mu^2 - \mathbf{m}_s^2)^{3/2})]\}^{1/3}$

Strangelet interaction in a calorimeter

• Mean interaction path in the lead absorber

$$\lambda_{\text{str-Pb}} = A_{\text{Pb}} m_n / [\pi (1.12 A^{1/3}_{\text{Pb}} + r_0 A_{\text{str}}^{1/3})^2]$$

Passing through the chamber strangelet collides with Pb nuclei: Spectator part is continuing a passage;

Wounded part produces particles in a standard way.

Particles produced in successive interaction points initiate a development of electromagneticnuclear cascades.

Process ends when a strangelet is destroyed.

E. Gładysz, Z. Włodarczyk, J. Phys. G23(1997) 2057

• Strange quark matter bulk radius

 $n = (ns + nd + nu)/3 = A/V = A/((4/3)\pi (r_0 A^{1/3})^3)$

• is determined by the number density of the *strange mater*

$$\mathbf{n}_{i} = -\partial \Omega_{i} / \partial \mu_{i} \qquad i = u, d, s$$

n_i - calculated from thermodynamical potentials - J. Berger and L. Jaffe, Phys.
 Rev. C35(1987)213:

A _{str}	15	15	40
μ [MeV]	300	600	1000
r ₀ [fm]	0.86	0.41	0.25
R _{str} [fm]	2.12	1.02	0.85
λ^{coll}_{geo} [cm]	7.9	10.6	11.1

target – W $\lambda_{coll} \approx 5.7 \text{ cm}$ $\alpha_c = 0.3$

NEW FINDINGS: Reexamination of Centauro I:

NO CASCADES belonging to the family in the upper chamber

EVENT MORE EXOTIC !?

HIJING

high multiplicity mostly photons and mesons (pions)

CENTAURO

low multiplicity

different particle composition

no gammas and pions, mostly baryons

E. G.-D. - generation by CNGEN

Pseudorapidity distributions of Centauro decay products and strangelets depend on fireball characteristics: temperature, baryon chemical potential, stopping

Expected at LHC:

Energy densities up to

10 40/ND "N/1

10

-2

0

 $\epsilon \sim 30 \text{ GeV/fm}^3$

 $\Delta y_{stop} \sim 2 - 3.5$

• $\Delta y_{stop} \sim 2 - 3$

by CNGEN

HIJING, VENUS

BRAHMS at RHIC

E. G.-D. - generation

n

Preliminary suggestions

Search for Centauros in central detectors

Search for Strangelets in ALICE *Preliminary suggestions*

> deviation from expected ratios of signals from proton to neutron ZDCs

No events with high N1/P1 (or N1~P1~0)

for STRANGELETS: unusually high N1/P1 is expected in Pb + Pb

There are events in which almost all energy is deposited in N1 or P1 ZDC

MULTIPLICITY in the CASTOR acceptance (and T2-TOTEM)

mostly baryons + kaons *E. G.-D., Acta Phys.Pol. B37 (2006) 153* dominated by pions

ALICE neutron ZDC

100

80

60

40

pp -> there are events in which almost all energy is deposited in one tower

R- Hadrons - hypothetical particles

composed by a supersymmeric particle and at least one quark

- Predicted by a few new theories (**split SUSY**, Universal Extra Dimensions)
- Possible when a colored supersymmetric particle (e.g. gluino or squark) has a litefime longer than typical hadronization time scale
- R-bosons are very massive, and R-fermions (e.g. gluino) are at the TeV scale (split SUSY)
- Colored gluino (spin = 1/2, R = -1), supersymmetric partner of gluon (spin = 1, R = 1)
- → can only decay to other colored particles
- ➤ R-parity prevents a direct decay to quarks/gluons
- the only colored supersymmetric particles (R = -1) are squarks, but being bosons have much higher masses
- → very long lifetime of gluino,

which can decay only through a virtual high-mass squark

- → opportunity to observe a SUSY particle directly in a detector, instead by reconstructing its decay chain or by momentum imbalance
- The same role can be played by the lightest squark (e.g. stop)

$$R = (-1)^{3(B-L) + 2S}$$

• Known particles **R** = + 1:

Fermions:

(anti) quarks: B = (-1/3) 1/3, L = 0, spin $S = \frac{1}{2} n$

(anti) leptons: B = 0, L = (-1)1, S = 1/2n

Bosons: B = 0, L = 0, S = 0, n

• Supersymmetric particles R = -1:

each particle has supersymmetric partner with the same quantum numbers with exception of a spin shifted by 1/2

Magnetic monopoles – Dirac 1931 e g = n $\hbar c/2$, n=0,±1,±2,... -> $g_{\rm p} = \hbar c/2e = (137/2) e$

- No predictions for Dirac monopole mass assuming that `classical monopole radius` $r_m = r_e$ $M_m = n^2 g^2 m_e / e^2 = \simeq n^2 4700 m_e \simeq n^2 x 2.4 \text{ GeV}$
- GUT

 $M_{m}^{}\approx\,10^{16}\,{}^{-}10^{17}\,GeV$ of the order of the unification scale

- New Theories
 - M_m~ 1 15 TeV Intermediate Mass Monopoles (IMMs)

unification scale could be lowered through appearance of extra dimensions

-> monopoles could be produced at LHC energies.

Azimuthal distribution of particles produced by trigger and companion jets

- η -plot is unavailable at RHIC but
- two -bump structure of the azimuthal angle distribution of the hadrons belonging to companion (away-side) jet is seen in AuAu

(it is the projection of the ring on its diameter)

companion jet- traversing the whole nucleus is modified by "in-medium" effects:

initiating parton: normal fragmentation +Cherenkov gluons

Relativistic monopoles

IDEA

lower monopole masses M

and/or

higher

magnetic charges ng

and

heavier absorber

bremsstrahlung dominates Wick et al., *Astr. Phys. 18 (2003) 663* -> calculations for M = 100 TeV in air

E.G. -> estimation for M = 10 GeV, n=1, Pb

The proposed new method of monopole detection needs:

- Relativistic monopoles ->
 - LHC energies enough high to produce relativistic monopoles

pp - 7 TeV-> M=10,100,1000 GeV; =700,70,7 $PbPb -2.76 \text{ TeV/n*}208 = 574 \text{ TeV} \rightarrow M=10,100,1000 \text{ GeV};$ =57000,5700,570

- Monopoles could gain energy in magnetic fields

- Bremsstrahlung domination -> monopole energy losses mostly by successively emitted high energy photons
- Radiation length several times longer than that for electrons
 -> separation of electromagnetic showers initiating by monopole radiated photons and developing in the calorimeter absorber

For high γ bremsstrahlung dominates at some values of monopole mass and charge

- ionization: $(dE/dx)_g^{ioniz} \sim (ng)^2 Z \ln(\gamma)$
- bremsstrahlung: $(dE/dx)_g^{brem} \sim (ng)^4 Z^2 \gamma \ln(\gamma) / M_g$
- $\Rightarrow (dE/dx)_g^{brem}/(dE/dx)_g^{ioniz} \sim (ng)^2 Z \gamma /M_g$

Strong bremsstrahlung for high magnetic charges (high n and g), low monopole masses, heavy absorbers (high Z)

Monopole trajectories in a solenoidal field

```
Lorentz force F = e(E+\beta xB) + g(B-\beta xE)
```

Bauer et al., NIM, A545(2005)503, modified GEANT

- parabolic trajectory in the beam line (r,Z) plane (for e=0; E =0),
- straight line in the plane (r, \u03c6) perpendicular to the magnetic field no other particle mimic the parabolic trajectory of monopole !
- monopole is accelerated along an external magnetic field

\downarrow

- Ight monopole (and heavy with small kinetic energy and pT) tend to be swept out along the beam pipe
- → energy gain $W_m/LB = nx20.6 \text{ GeV } m^{-1}\text{T}^{-1}$

(H.Knoepfel, "Magnetic Fields" Wiley -IEEE,2000)

strong signal in one tower of one ALICE ZDCs or in CMS CASTOR calorimeter

Bremsstrahlung domination -> monopole energy losses mostly by successively emitted high energy photons replacing ze->ng in formula from Ahlen, Rev. Mod. Phys. (for $\gamma >>1$) gives: $(dE/dx)_{mon}^{brem}/(dE/dx)_{mon}^{ioniz} \sim [(4/3\pi)(ng)^2 Zm_e^{-1/137M_g}][ln(\lambda M_g 192/m_e(ng)^{1/3}]/L$ where L=ln(2m_ $c^2\beta^2\gamma^2/l)$ - β^2 Bremsstrahlung to ionization energy loss in Pb dE_brem/dE_ioniz gD = n*(137/2)*e 25 **Strong bremsstrahlung** for high charges, low 20 monopole masses, heavy m = 100 GeV; n = 3 m = 10 GeV; n = 1 absorbers (high Z) 15 e.g. for M<100 GeV/c2, γ>100 10 bremsstrahlung m = 100 GeV; n = 2 dominates ionization energy loss 50 450 500 400 100 150 200 250 300 350

E.G.-D. preliminary

γ

• replacing ze->ng in formula from Ahlen, Rev. Mod. Phys. (for $\gamma >>1$) gives:

 $(dE/dx)^{\text{pair}}/(dE/dx)^{\text{brem}} \sim M_{a}/[1000 \text{ m}_{e}(ng)^{2}]$

Strong bremsstrahlung for high charges, low monopole masses

> M<100 GeV/c2 bremsstrahlung dominates pair production energy losses

