Operation and Performance of the LHCb Experiment

Patrizia de Simone on behalf of the LHCb Collaboration Epiphany Conference Cracow, 10–12 January 2011

Epiphany 2011, Cracow

LHC as a *b*-factory

✓ bb-pairs produced with high cross-section at LHC <u>from PYTHIA</u> $\sqrt{s} = 7$, 10, 14 TeV $\sigma_{inel} \approx (0.89, 0.95, 1) \times 80 \text{ mb}$ $\sigma_{bb} \approx (0.44, 0.67, 1) \times 500 \text{ µb} \Rightarrow \approx (4.4, 6.7, 10.)10^{11} \text{ bb} \text{ produced in 1 year at } 2X10^{32} \text{ cm}^{-2}\text{s}^{-1}$ charm production $10 \times \text{ larger}$

- ✓ all species of particles containing a b-quark are produced (B_u⁺, B_u⁻, B_d⁰, B_d⁰, B_c⁺, B_c⁻, B_s⁰, A_b, etc.)
- \checkmark the mean B decay flight distance \approx 1 cm

challenge to select the events of interest:

- ✓ $\sigma_{\rm bb}$ < 1% $\sigma_{\rm inel}$
- ✓ B decays of interest typically have BR < 10⁻⁵
- ✓ need high statistics and high selectivity

The LHCb Experiment

exploting the abundant bb production at LHC to

✓ high precision studies of CP violation and rare decays with beauty and charm hadrons
✓ search of New Physics probing the flavour structure of the SM

LHC The LHCb Detector ✓ flexible, fast and highly selective trigger to reduce the minimum bias \checkmark excellent vertexing (proper time resolution) to distinguish B-decays from background and to resolve fast B_s oscillations ✓ excellent tracking (momentum and mass resolution) to reduce the background ✓ good particle identification to reduce the background muon system μ /h separation trigger **RICH** detector SPD/PS HCAL $M3 \sqrt{M4 - M5}$ У $p/K/\pi PID$ 5m Magnet T₃ PICH₂ conductor -M1 warm, Al vertex T2 integrated field 4Tm (10 m) locator RICH1 peak field 1.1 T polarity can be changed Vertex Locator BEAM 2 BEAM 1 – 5m calorimeter Ż $h/e/\gamma$ separation 20m 10m 5m tracking system trigger P. de Simone, LNF-INFN Epiphany 2011, Cracow 4

Integrated Luminosity at $\sqrt{s} = 7$ TeV LHC

✓ L_{peak}^{LHC} in LHCb ≅ 1.7 × 10³² cm⁻² s⁻¹ with 344 colliding bunches ✓ overall data taking efficiency of ≈ 90% over the year

✓ recorded luminosity ≈ 37 pb⁻¹ corresponds to ≈ 10^{10} bb-pairs produced

LHCb running conditions

μ

in 2010 LHC reached $\approx 80\%$ of the design luminosity for LHCb with $N_{bb} = 344$ and $\beta^* = 3.5$ m thus with an higher **Mu**

- ✓ more vertices per collision
- \checkmark more tracks and event complexity
- \checkmark increase the readout rate per bx
- ✓ increase event size and processing time

<u>flexibility of the trigger \rightarrow upgrades "on the fly" !!</u>

Epiphany 2011, Cracow

Example of one event with high Mu

LHCb trigger nominal

✓ to reduce the input rate 10 MHz down to 2 kHz (*limit imposed by offline resource*) while keeping a good efficiency on interesting B decays (*typically have BR < 10⁻⁵*)

Level O Customized Hardware Trigger LO

- ✓ pile-up, calorimeter and muon systems
- \checkmark search for high-p_t/E_t μ , e, γ , hadron candidates

High Level software Trigger HLT

C++ algorithms running on 16000 processors forming the Event Filter Farm (EFF)

- ✓ HLT1 finds vertex in VELO and tracks with high Impact Point and p_t to confirm or reject the LO candidates
- HLT2 global event reconstruction + inclusive/exclusive selections

storage: event size ≈ 35 kB

LHCb trigger 2010

★ ϵ_{tr} on hadronic decays of prompt D are ≈ 4 times higher w.r.t. nominal settings

★ added 400 nodes in less than 3 days in order to double the EFF capacity

another upgrade by 400 nodes during the winter shutdown

Epiphany 2011, Cracow

P. de Simone, LNF-INFN

introduce Global Event Cuts
→ SPD (scintillator layer in front of the calorimeter)
multiplicity + number of VELO hits

 \rightarrow remove events with high track multiplicity

- ightarrow to reduce the processing time
- ✓ avoid to reach the bandwidth limitations
 - \rightarrow event size at high **MU** \approx 65 kB

the detector hardware behaved extremely well during the 2010Epiphany 2011, CracowP. de Simone, LNF-INFN

VErtex LOcator (VELO)

 \checkmark 2 halves with 42 semi circular silicon sensors orthogonal to the beam, r ϕ geometry

- \checkmark VELO halves move at every fill from 30 to 7 mm from the beam axis
- \checkmark module and sensor alignment known to <u>better than 5 µm</u> target < 2 µm
- \checkmark strip pitch between 40 and 100 μm

Vertexing

Impact Parameter resolution

- ✓ assume all tracks originate from primary Interaction Point
- ✓ measure the resolution as the spread of IP distribution

LHCb THCp

Primary Vertex resolution

- ✓ measure the resolution by randomly splitting the track sample in two
- \checkmark comparing vertices with same multiplicity
- method validated with MC

MC $\sigma(\tau) \approx 40$ fs on b-hadrons decay times

Silicon Tracker

TT Tracker Turicensis

- $\checkmark~$ 2 stations with 500 μm thick strip sensors
- ✓ 4 layer/stations x-u-v-x orientation with ±5° stereo angle
- ✓ pitch 183 µm
- IT Inner Tracker (higher flux in inner region)
- ✓ 3 stations with 320 µm/410 µm thick strip sensors
- ✓ 4 layer/station x-u-v-x orientation with ±5° stereo angle
- \checkmark pitch 198 μ m

LHCD

B field in y-dir charged particles deflected in x-dir

the ST sensor alignment precision is $\cong 35 \ \mu m$ for TT, and $\cong 16 \ \mu m$ for IT

Outer Tracker

OT Outer Tracker B field in y-dir charged particles deflected in x-dir \checkmark 3 stations, each with 4 double layers of ≅ 5 mm diameter straw tubes \checkmark x-u-v-x orientation with ±5° stereo angle х √ gas Ar/CO₂/O₂ 70/28.5/1.5 OT VELO Z OT resolution Zmagnet (scaled to unit integral) 2010 data magnetic field 2010 mc σ ≅ 250 μm T1 T2 тз OT well aligned \rightarrow resolution in very good agreement with MC 0 residual [mm]

from residual of the R(t) relation

Epiphany 2011, Cracow

PID with RICH

it allows separation of topologically identical final states, e.g. $B \rightarrow hh$

Calorimeters

LHCb THCp

- \checkmark to trigger on e, γ ,h candidates with high E_t at the LO level
- \checkmark to identify e, γ and π^{0}

time aligment at 1 ns level

Epiphany 2011, Cracow

Scintillator Pad Detector (SPD)/PreShower (PS) 2.5 X_0 Pb converter sandwiched between two scintillator planes 15 mm thick, light collected with WLS fibers

Electromagnetic Calorimeter (ECAL) Shashlik technology, 66 layers of 2mm Pb / 4mm scintillator (25 X_0), light collected with WLS fibers

Hadronic Calorimeter (HCAL) iron-scintillator tiles (5.6 λ_i)

 $\frac{M\pi^{0} \text{ resolution}}{even better than}$ expected !

ECAL
$$\frac{\sigma}{E} \approx \frac{9\%}{\sqrt{E}} \oplus 0.8\%$$

HCAL $\frac{\sigma}{E} \approx \frac{69\%}{\sqrt{E}} \oplus 9\%$

PID with calorimeter

the efficiency of the muon stations is stable and > 99% as expected

✓ gas mixture: Ar/CO2/CF4 \checkmark total interaction length of the calorimeters and the iron absorbers \approx 20 $\lambda_i \rightarrow$ minimum $p_u \approx$ 6 GeV/c

 \checkmark the detectors provide space point measurements

of the tracks \rightarrow logical pads

 \checkmark the geometry of the 5 stations is projective

 \checkmark to trigger on muon candidates with high p_t at the LO level

 \checkmark to identify muons

Muon

5 stations 4 are sandwiched with iron filters \rightarrow M1 (before) and M2-M5 (behind) the calorimeters, instrumented with MWPC (2 double gaps) except the highest rate region (the inner area of M1) with tripleGEM

PID with muon

efficiency with the tag and probe method using of $J/\psi \rightarrow \mu\mu$

PID with muon

 $\mu^{-\pi}$, μ^{-K} and μ^{-p} misidentification rates have been determined using large samples of $K_s \rightarrow \pi\pi$, $\phi \rightarrow KK$ and $\Lambda \rightarrow p\pi$ decays

LHCb first physics results

Other talks at this conference

✓ Prompt J/ ψ and b->J/ ψ X production in pp collision at $\sqrt{s} = 7$ TeV Emanuele Santovetti

- ✓ Studies of hadronic B decays with early LHCb data Rudolf Oldeman
- \checkmark Prospects for CP violation in B_s -> J/ ψ ϕ from first LHCb data Roel Aaij
- ✓ W and Z production in forward region at LHCb Katharina Mueller
- ✓ Particle production studies at LHCb Bogdan Popovici

Summary and outlook

- ✓ The challenges of this first year of running in extreme conditions have been overcome → being able to follow the luminosity growth
- ✓ The performance of the detector and the quality of the data collected are excellent
 - about 37 pb⁻¹ of useful data with an efficiency above 90% performance close to the expectations first important physics results emerging
- ✓ Looking forward to a successful physics run in 2011 → expect to collect = 1 fb⁻¹ maximum instantaneous luminosity of =3×10³² cm⁻²s⁻¹ at the LHCb Interaction Region maximum MU of 2.5 (detector operations seems feasible and possible) with 1-2 fb⁻¹ of data we can make precise measurements in areas with great discovery potential
- ✓ The preparation for the LHCb upgrade to collect data at 5–10 times higher luminosity is underway